## Louisiana Transportation Research Center

## Final Report 598

# ITS Support for Pedestrians and Bicyclists Count: Developing a Statewide Multimodal Count Program 

by
Julius Codjoe, Ph.D., P.E.
Yoshita Holamoge
Rui Tian
C. Ash

William Saunders

LTRC


4101 Gourrier Avenue | Baton Rouge, Louisiana 70808 (225) 767-9131 | (225) 767-9108 fax | www.ltrc.Isu.edu

| $\begin{aligned} & \hline \hline \text { 1. Report No. } \\ & \text { FHWA/LA.017/598 } \end{aligned}$ |  | 2. Government Accession No. | 3. Recipient's Catalog No. |
| :---: | :---: | :---: | :---: |
| 4. Title and Subtitle <br> ITS Support for Pedestrians and Bicyclists Count: Developing a Statewide Multimodal Count Program |  | 5. Report Date July 2019 |  |
|  |  | 6. Performing Organization Code <br> LTRC Project Number: 17-2SA <br> State Project Number: DOTLT1000162 |  |
| 7. Author(s) <br> Julius Codjoe, Y. Holamoge, R. Tian, C. Ash, and W. Saunders |  | 8. Performing Organization Report No. |  |
| 9. Performing Organization Name and Address Louisiana Transportation Research Center 4101 Gourrier Avenue, Baton Rouge, LA 70808 Louisiana |  | 10. Work Unit No. |  |
|  |  | 11. Contract or Grant No. |  |
| 12. Sponsoring Agency Name and Address <br> Louisiana Department of Transportation and Development P.O. Box 94245 <br> Baton Rouge, LA 70804-9245 |  | 13. Type of Report and Period Covered Final Report, 02/01/2017-12/31/2017 |  |
| 15. Supplementary Notes Conducted in Cooperation with the U.S. Department of Transportation, Federal Highway Administration |  |  |  |
| 16. Abstract <br> It is critical to understand the travel behavior of pedestrians and cyclists on Louisiana's roadways. Not only do pedestrian and cyclist counts assist in research for safety, but these statistics are also essential for planners and policymakers when evaluating the usage of roadways and dictating infrastructure spending. Better understanding of overall statewide and location-specific transportation trends ultimately affects long-term planning and investment. Counting of pedestrians and cyclists using video surveillance and image processing technology has promised to be effective and feasible. While the research on newer technologies is not as robust as that of traditional ones, there is enough evidence to justify and guide the use of automated video count technology. This study concentrates on a specific algorithm, which would aid in automatic counting. This goal is achieved by following a part-based method, which utilizes the Histogram of Oriented Gradient (HOG) technique as well as a latent support vector machine (SVM). This technique was the preferred algorithm for automation due to its highspeed processing capability and its open source availability. The accuracy of the HOG algorithm in this study is validated using manual counts of pedestrians and cyclists from the collected video data. It is anticipated that the results will assist LTRC-16-4SA in evaluating available count technology options and in identifying preferred alternatives suitable for statewide deployment. The tested algorithm led to accuracy rates between $29-91 \%$ for pedestrians and $0-60 \%$ for cyclists. Despite the poor results obtained, the algorithm's efficacy was thoroughly evaluated and documented. Some of the specific challenges faced in this study involved maintaining accurate viewpoint angles as well as conducting object detection in high-density environments and complicated scenes like intersections. New automated video counting systems have sought to improve algorithms in these problematic areas. Future work involves effectively handling these challenges and reevaluating the algorithm while considering others currently being used today. |  |  |  |
| 17. Keywords <br> Pedestrian and Cyclist Counts, Manu manual counts, automated counts, Hi (HOG), Support Vector Machine (SV | Automated Video-Based Counts, Gradient of Orientated Gradient | 18. Distribution Statement Unrestricted. This document is available through the National Technical Information Service, Springfield, VA 21161. |  |
| 19. Security Classif. (of this report) | 20. Security Classif. (of this page) | 21. No. of Pages 81 | 22. Price |

## Project Review Committee

Each research project has an advisory committee appointed by the LTRC Director. The Project Review Committee is responsible for assisting the LTRC Administrator or Manager in the development of acceptable research problem statements, requests for proposals, review of research proposals, oversight of approved research projects, and implementation of findings.

LTRC appreciates the dedication of the following Project Review Committee Members in guiding this research study to fruition.

LTRC Administrator<br>Kirk Zeringue<br>Special Studies Research Administrator

Members<br>April Renard<br>Jason Chapman<br>Joshua Harrouch<br>JT Sukits<br>Betsey Tramonte<br>Laura Riggs<br>Dan Jatres<br>Gilles Morin<br>Jessica DeVille

Directorate Implementation Sponsor
Christopher P. Knotts, P.E.
DOTD Chief Engineer

# ITS Support for Pedestrians and Bicyclists Count: Developing a Statewide Multimodal Count Program 

by<br>Julius Codjoe, Ph.D., P.E.<br>Yoshita Holamoge<br>Rui Tian<br>C. Ash<br>William Saunders<br>Louisiana Transportation Research Center<br>4101 Gourrier Avenue<br>Baton Rouge, LA 70808<br>LTRC Project No. 17-2SA<br>State Project No. DOTLT1000162<br>conducted for<br>Louisiana Department of Transportation and Development<br>Louisiana Transportation Research Center

The contents of this report reflect the views of the author/principal investigator who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Louisiana Department of Transportation and Development or the Louisiana Transportation Research Center. This report does not constitute a standard, specification, or regulation.

July 2019


#### Abstract

It is critical to understand the travel behavior of pedestrians and cyclists on Louisiana's roadways. Not only do pedestrian and cyclist counts assist in research for safety, but these statistics are also essential for planners and policymakers when evaluating the usage of roadways and dictating infrastructure spending. Better understanding of overall statewide and location-specific transportation trends ultimately affects long-term planning and investment. Counting of pedestrians and cyclists using video surveillance and image processing technology has promised to be effective and feasible. While the research on newer technologies is not as robust as that of traditional ones, there is enough evidence to justify and guide the use of automated video count technology. This study concentrates on a specific algorithm, which would aid in automatic counting. This goal is achieved by following a partbased method, which utilizes the Histogram of Oriented Gradient (HOG) technique as well as a latent support vector machine (SVM). This technique was the preferred algorithm for automation due to its high-speed processing capability and its open source availability. The accuracy of the HOG algorithm in this study is validated using manual counts of pedestrians and cyclists from the collected video data. It is anticipated that the results will assist LTRC-16-4SA in evaluating available count technology options and in identifying preferred alternatives suitable for statewide deployment. The tested algorithm led to accuracy rates between $29-91 \%$ for pedestrians and $0-60 \%$ for cyclists. Despite the poor results obtained, the algorithm's efficacy was thoroughly evaluated and documented. Some of the specific challenges faced in this study involved maintaining accurate viewpoint angles as well as conducting object detection in high-density environments and complicated scenes like intersections. New automated video counting systems have sought to improve algorithms in these problematic areas. Future work involves effectively handling these challenges and reevaluating the algorithm while considering others currently being used today.


## ACKNOWLEDGEMENTS

This project was completed under the support of the Louisiana Department of Transportation and Development (DOTD) and the Louisiana Transportation Research Center (LTRC). The research team also gratefully acknowledges the assistance received from the University of New Orleans under the leadership of Tara Tolford for providing useful information and data, the 16-4SA Project Review Committee (PRC) members for their valuable feedback, and all other personnel involved during the course of this project.

## IMPLEMENTATION STATEMENT

The findings of this study support LTRC Project No. 16-4SA whose overall findings will be directly applicable for implementation by DOTD. The entire study also involves the development and recommendation for both short-term and long-term multimodal data collection program opportunities. The deliverables include a funding guide, a blueprint for potentially utilizing existing video data, and a detailed guide for one or more preferred data collection methodologies that evaluate performance in the context of complete streets policy and design. In addition to use by DOTD, these findings may be of use to Metropolitan Planning Organizations (MPO) and local government entities throughout Louisiana, and beyond.

The research teams for both this support study and LTRC-16-4SA will also endeavor to present and publish the findings, which contribute to the overall literature in this field or may be of interest to practitioners in journals with a national audience in order to facilitate the transfer of research more broadly.

## TABLE OF CONTENTS

ABSTRACT. ..... iii
ACKNOWLEDGEMENTS ..... v
IMPLEMENTATION STATEMENT ..... vii
TABLE OF CONTENTS ..... ix
LIST OF TABLES ..... xi
LIST OF FIGURES ..... xiii
INTRODUCTION ..... 1
OBJECTIVE ..... 3
SCOPE ..... 5
METHODOLOGY ..... 7
Background .....  7
Manual Video-Based Counting Methods ..... 7
Automated Video-Based Counting Methods ..... 8
Recent Research ..... 9
Current Algorithms in Image Processing ..... 11
The Part-Based Method ..... 13
Data Description and Analysis ..... 17
Site Selection ..... 17
Camera System Implementation ..... 20
Data Collection ..... 22
Data Analysis ..... 22
DISCUSSION OF RESULTS ..... 25
CONCLUSIONS ..... 27
RECOMMENDATIONS ..... 29
ACRONYMS, ABREVIATIONS, AND SYMBOLS ..... 31
REFERENCES ..... 33
APPENDIX ..... 37

## LIST OF TABLES

Table 1 Site pedestrian and cyclist densities. ..... 20
Table 2 Truncated presentation of compiled counts ..... 24
Table 3 Accuracy rates of pedestrian and cyclist detection at different sites ..... 25
Table 4 Accuracy rates of pedestrian detection at different pedestrian densities ..... 26
Table 5 Accuracy rates of cyclist detection at different cyclist densities ..... 26

## LIST OF FIGURES

Figure 1 Feature pyramid of a person model ..... 15
Figure 2 Pedestrian and cyclist at Site 1 Government Street ..... 17
Figure 3 Pedestrians and cyclist at Site 2 Dalrymple Drive ..... 18
Figure 4 Pedestrians and cyclist at Site 3 CEBA Lane ..... 18
Figure 5 Pedestrians and cyclist at Site 4 Nicholson Extension ..... 19
Figure 6 Pedestrians and cyclist at Site 5 Student Union ..... 19
Figure 7 Camera system set-up ..... 22
Figure 8 HOG detection of pedestrian ..... 23
Figure 9 HOG detection of cyclist ..... 23

## INTRODUCTION

Understanding the travel behavior of pedestrians and cyclists on Louisiana's roadways is critical to evaluating safety outcomes relative to rates of exposure; identifying appropriate, context-sensitive complete streets infrastructure interventions; and understanding overall statewide and location-specific transportation trends. Better understanding of such trends ultimately affects long-term planning and investment. Pedestrian and cyclist counts, as well as vehicle counts, are important sources of information for planners and policymakers when dictating transportation planning and infrastructure spending. Current and reliable statistics are essential for evaluating the usage of roadways and for optimizing spending and investment.

A wide range of hardware is available to address the challenges associated with pedestrian and cyclist counting such as laser beams, infrared counters, piezoelectric pads, etc. However, most of these sensors fail to give accurate measurements of density. Manual counts performed by humans in the field are common but are labor-intensive and inefficient for large-scale counting programs sought by cities and states today. Also, these counts generally rely on human capacity and accuracy rates are prone to human error. In areas with a high density of pedestrians and cyclists, the method of manual counting is essentially impractical. As a result, there has been more effort into the development of algorithms that minimize human intervention when counting. Despite the challenges, automated data collection presents many benefits over manual counts. Thus, video image processing technology can play a key role as the methods and equipment improve and become more accessible and financially feasible.

The purpose of this study is to research the feasibility of developing an automated pedestrian and cyclist counting system from archived video footage. This study utilized the Histogram of Oriented Gradient (HOG) technique due to its high speed processing capability and its open source availability [1]. The accuracy of the HOG algorithm is validated using manual counts of pedestrians and cyclists from the collected video data. It is anticipated that the results will assist LTRC-16-4SA to evaluate available count technology equipment options and identify preferred alternatives suitable for statewide deployment.

## OBJECTIVE

The objective of this study was to develop a system for automated pedestrians and cyclists counting on roadways using archived video data. This goal was achieved by following a partbased method, which utilizes the Histogram of Oriented Gradient (HOG) technique as well as a latent support vector machine (SVM). This technique is the preferred algorithm for automation due to its high-speed processing capability and its open source availability. It is anticipated that the results of this study will assist LTRC-16-4SA in evaluating available count technology equipment options and identifying preferred alternatives suitable for statewide deployment.

## SCOPE

The research team relied on video footage collected at locations on the campus of Louisiana State University (LSU) as well as one site in Baton Rouge, Louisiana. These were sites with expected high volumes of pedestrians and cyclists. The study is exploratory in nature, researching on the feasibility of developing an algorithm capable of automated counts. The research documents other current research and technology used today in this field of counting.

## METHODOLOGY

The research team performed several tasks to achieve the study's objectives. This section includes background information that highlights literature on current counting methods, a discussion on mainstream algorithms used in image processing and object detection, and a brief description of HOG, the technique adopted for this study. The data collection procedure is then presented by discussing the study area, camera implementation, and collection of data. Lastly, the analysis using the collected data is summarized.

## Background

## Manual Video-Based Counting Methods

Using video technology for pedestrian and cyclist counting programs is relatively new but has shown some promise. As with counting technologies in general, video counting technology can be broken down into two distinctive categories, manual and automated. Video technology can be used to perform manual observation counts simply by allowing researchers to review video data, while automated video counts rely on video image processing technology to detect, classify, and record data. Both techniques have their own advantages and limitations.

An obvious advantage that video observation presents over traditional manual counting is the ability to manipulate the speed at which the data is observed. In cases of high volume, the observer can slow down, pause, or even rewind data for verification and thus achieve increased accuracy. The ability to review collected video data, allows for more accurate accounting of user characteristics (e.g., gender, race, helmet use, etc.) for the given time an observer has to review and analyze the data. Video observations also allow for counts of a longer duration that would otherwise be impossible or suffer in terms of accuracy due to counters tiring or becoming distracted standing in the field for hours at a time. Through video observations, an agency can keep archived video footage, which can be reviewed for verification as and when needed. A convenient benefit that manual video observations provide is a way to analyze the variance between manual counts and automated counting equipment for testing accuracy.

The primary limitation of manual video observation is the same as with any manual count. This method ultimately depends on the accuracy and motivation of the human counter. Apart from human error, video observations (manual or automated) are susceptible to the problems of traditional automated counting devices (e.g., theft, vandalism, malfunctions, etc.). Additionally, weather and lighting can greatly inhibit counting via video observation while other forms of automated counting do not suffer in this way. While manual video
observations are the most accurate form of counting under ideal conditions (no time constraint and no human error), there exist the problem of additional labor hours required to meticulously view and document the data.

## Automated Video-Based Counting Methods

Automated video counting technology, on the other hand, can eliminate many of the labor costs associated with manual counting. By using a camera and computerized algorithms, automated video counting systems can collect and catalog data instantaneously or sequentially, without the need of a human aside from setup and maintenance.

Although some early studies demonstrated the potential utility of using video technology for bicycle and pedestrian counting, the development of reliable and accurate methods for deployment is relatively new [2]. The technology has come a long way in the past couple of decades. Even as far back as the year 2000, a video count system that could detect, track, and classify objects was created, though its accuracy rate for counting bicycles was only $70 \%$ [3]. The process of detecting movement and singling out an object, tracking the object frame-by-frame, and then classifying it by type (e.g. pedestrian, bicycle, vehicle, etc.) is broadly referred to in the literature as image processing, which is the basis of any automated video counting system.

Most of the work in automated video counting since has essentially been an effort to improve upon one or more of those three basic steps of image processing. Malinovskiy et al. improved detection and tracking of pedestrians and cyclists with a simplified system that achieved a $92.7 \%$ average count accuracy rate [4]. Somasundaram et al. created an algorithm to improve the classification step in the process, thus allowing a system to better distinguish between pedestrians and cyclists on trails and paths [5]. There have been many technical studies attempting to perfect complicated algorithms in order to improve overall accuracy. Generally, the process consists of those three basic steps: detection, tracking, and classification, even if they are referred to by slightly different terms.

As a detailed example, Li et al.'s "Real-Time System for Tracking and Classification of Pedestrians and Bicycles" shows that the researchers described their monitoring process as including the steps, motion detection, tracking, and classification [6]. Methods of motion detection include image difference, optical flow, and background subtractions. The study deemed image difference as simple but inaccurate and optical flow as complicated and easily disturbed by noise. Thus, an adaptive background subtraction model known as the Gaussian mixture model (GMM) was used for detecting and extracting moving objects. An intermediary step occurs between motion detecting and tracking whereby overlapping shadows that cause misclassification are removed before the object is extracted. The
researchers used the Kalman Filter (KF) to plot the objects' paths in the tracking step, and a backpropagation neural network (BPNN) was used to classify objects as vehicle, bicycle, or pedestrian. The algorithm was trained to correctly identify objects by using 100 extracted moving objects of each category as feature vectors, or numerical representations, in order to facilitate pattern recognition and machine learning.

Whereas video image processing is simply a process that extracts and refines images for classification, computer vision (CV) takes that a step further by attempting to replicate and exceed human vision by learning, inferring, and acting based on visual input. Image processing and machine learning are techniques that CV uses. In the aforementioned study, Li et al. achieved an $85 \%$ detection accuracy rate for pedestrians and a count error rate of less than $13 \%$ for bicycles across all three test sites [6]. The miscounts were primarily due to occlusion, a term often used in the literature to describe a situation in which an object, such as a vehicle, blocks the camera from properly detecting or classifying another object, such as a pedestrian or bicycle. Occlusions can also occur if an object ceases movement for long enough to merge into the background, from the system's perspective. Ling et al. achieved accurate pedestrian counts with a new counting system using a stereo, or 3D, camera and a laser scanner to avoid occlusion as much as possible, while Belbachir et al. achieved a classification accuracy rate of over $92 \%$ using a similar 3D system [7, 8].

## Recent Research

Research has increased significantly in the past five years with algorithms becoming more sophisticated. Another study by Li et al., designed to measure pedestrian counts, direction, and walking speed, concluded that "computer vision techniques have the potential to collect microscopic data on road users at a degree of automation and accuracy that cannot be feasibly achieved by manual or semi-automated techniques" [9]. Similarly, Zaki et al. determined that "accurate automated cyclist counts and tracking can be performed with CV techniques and may expand the possibilities for cyclist data collection significantly, both geographically (different locations) and temporally (for longer periods of time)" [10]. Recent attempts to improve CV algorithms typically target specific problems with the technology, including classification difficulties and counting in complicated environments.

Classification has always been the most challenging step in image processing.
Somasundaram et al. plainly described that the reason it is challenging for machines to distinguish between bicycles and pedestrians is that "a bicyclist is an intricate combination of a bicycle and a person" [11]. In response, their team developed a new algorithm aimed at further improving classification between pedestrians and cyclists. More recently, Shahraki et al. developed an improved system for video counting of bicycles by implementing a
combination of classification techniques [12]. It was determined that combined approaches proved more accurate than using a single classification technique.

New automated video counting systems have sought to improve algorithms in certain problematic areas, including high-density environments, complicated scenes like intersections, and occlusion resulting from lighting and weather. Li et al. developed an improved system for counting pedestrians in environments with large, dense crowds [13]. Their process used two detectors to detect both the upper bodies and full bodies of pedestrians and then combined the results to improve count accuracy. Zaki and Sayed also proposed an effective method for measuring bicycle activity in high-density environments, including volume count and average speed [14]. The study concluded that it is feasible to collect cyclist data with automated video technology in dense conditions, and the research team hoped that engineers and planners would begin to trust and rely on this type of automated data collection to guide their processes.

Zangenehpour et al. presented a new method for short-term bicycle counts in different environments, namely at intersections, where more traditional counting methods, like loop detectors and pneumatic tubes, are not as effective [15]. Automated video technology's ability to perform counts across a screen line or at intersections, as well as in mixed traffic scenarios is becoming a key advantage. While some more traditional automated technologies may not be affected by lighting and weather, these factors can greatly affect the accuracy of automated video counts, as they can with manual video observations. However, a study by Kristoffersen et al. suggests that thermal cameras may be of use both day and night [16]. The study used two cameras in a stereo setup and a 3D tracking algorithm to limit occlusions. The method achieved accuracy rates of $95.4 \%$ and $99.1 \%$ in the two five-minute tests in a public setting with a moderate density of people.

Though many sophisticated automated video counting systems have achieved greatly improved accuracy rates from the early days of the technology, the fact remains that a major downside of this technology is its high cost compared to other automated counting technologies. Still, cameras have increasingly become more affordable, thus making automated video technology a more viable count method than it once was. Furthermore, the opportunity exists to use devices that are already in place, like security and surveillance cameras, which can further cut overall cost.

Several recent studies have explored, either directly or tangentially, leveraging existing cameras. Existing cameras that could be used for this type of research generally have a topdown view of an area, which can cause difficulties in image processing systems, particularly in the tracking phase. Yuan et al. tested pedestrian detection with a top-view camera and
offered tracking and classification methods that attempted to solve common issues stemming from top-down angles [17]. Yu et al. then explored a method of pedestrian counting with an overhead camera without tracking as part of the process, instead proposing a spatial-temporal matrix [18]. Lin and Liu proposed a new idea for counting pedestrians with surveillance videos using a sophisticated two-stage tracking process [19]. Lastly, Wang et al. noticed that unpredictable movements were an issue with tracking pedestrians via surveillance systems, so they devised a system to account for this, achieving a 96.04\% count accuracy [20].

Eriksson also explored the use of existing cameras for collecting traffic data, including bicycles and pedestrians [21]. Some of the challenges of this method included poor video quality, issues with perspective, occlusion, and lighting. The author developed a software prototype to detect and track vehicles, bicycles, and pedestrians, but it was not able to tell the difference between users and classify them accordingly. The study suggested that the use of existing cameras (traffic cameras, police cameras, red light cameras, security cameras, etc.) are typically permanent, or at least long-term, and that any method of using them for traffic counts "should require minimal user input but facilitate easy validation of counts" [21]. Expanding this emerging field, Hipp et al. sought to use existing video technology to measure active transportation from a public health standpoint, determining that "publicly available web data feeds have great potential for capturing behavioral change associated with (built environments) BEs" [22].

New devices are becoming very portable and relatively easy to install. Pires et al. developed a method for a counting program in Pittsburgh earlier this year [23]. The research team opted for a portable data collection system consisting of "a ruggedized Windows tablet (Panasonic Toughpad), an extensible pole, and a miniature bullet camera" [23]. The bullet camera is affixed to the top of the extended pole, and that rig is secured onto a sturdy post found along the streetscape. The tablet is used to manage data collection, and the view of the camera can be monitored with it in case adjustments are needed. While some long-term counts may not be as practical with automated video technology as with more traditional automated counting devices due to battery life and data storage capacity, this system's battery capacity allows for up to twelve hours of data collection. The method has received positive reviews from both the City of Pittsburgh as well as the research community in general.

## Current Algorithms in Image Processing

Most of the algorithms used today in image processing and object detection can be placed under the major categorical methods: template based, model based, model free based, and part-based [24]. The template based algorithm can be defined as the process of finding a part
in an image and matching it with a previously known template. The template searches for a specific object within an image. Let the template be referred as $T(x, y)$ with $(x, y)$ being the physical coordinates. The next step is to slide that template image over the test image $F(j, k)$ with coordinates $(j, k)$ and find the sum of products. Once the entire test image is covered by the sliding template, the position with the maximum sum of product is termed to be the area of the template match [25]. For example, if a flower is to be identified, the process begins with a template of flower, which is then slid across an entire image. Generally, there are many template matching methods, such as squared difference, normalized squared difference, cross correlation and so on [26].

Another major algorithm utilized in image processing for object detection is called modelbased object detection. With this method, an object model is obtained by training a large amount of data to capture the object's appearance and geometrical properties [27]. This method can be utilized in an industrial scenario where the objects are known to be constant with regards to shape and size [25, 28, 29]. Unfortunately, this technique fails to give precise results when the objects vary heavily with time.

Image processing and more specifically, object detection focuses on the use of local and global features. Simple local features are mostly confined to a small area in the overall image. Examples include color, gradient, or the gray value of a pixel which are confined to this small area of interest. On the other hand, global features contain information on the entire image. The advantage of using local features is that it can cope with the problem of occlusions [25,29]. Humans are one of the most challenging categories in the study of object detection. There exists a rather large variability in the local and global appearance of pedestrians. For example, various types and styles of clothing can cause detection issues. In addition, the overall shape of objects experiences a large range of variations due to different poses. Essentially, only a few local regions are characteristic of the object being monitored.

Another, relatively simpler, approach in object detection was achieved using the model free approach. In their research, Malinovskiy et al. uses model-free video detection and tracking of pedestrians and cyclists by utilizing inherent features of objects such as the center of mass, the height of the object, the width of the object etc. Though this was computationally easier to achieve, the features used to detect the objects were variant with the varying conditions and hence the efficiency of accurate detection was low [30].

Researchers have concentrated on utilizing spatial temporal analysis for improving the robustness of a pedestrian counting algorithm. They avoided the tracking phase and substituted it with spatial temporal analysis [31]. This technique has also been used to detect objects with a variable background when a moving camera is utilized, that is, when both the
object as well as the background are moving [32]. A current state of the art technique, called YOLO (you only look once) which is proposed by Redmon et al., guarantees quick real time detection rates [33].

Recent research has also been concentrating on using the concept of deep learning as well as a neural network approach to solve problems with object detection [34, 35, 36]. Further improvements can be obtained in the detection capability by using deep learning convolutional neural networks at the cost of complex training mechanisms. These methods are often not feasible for quick implementation [37]. The template based method, modelfree approach and model based method approach are traditional algorithms in object detection. Deep learning is based on convolutional neural network. It requires training of the data similar to the part-based method which is described in the subsequent paragraph, but the decision making relies on convolutional neural networks.

In this project, the part-based method is followed as suggested by Felzenszwalb et al. [38] due to a simpler execution, and available open source algorithm. This algorithm follows a partial based model where each part can be explained in terms of other subparts. In regards to object detection, it utilizes the concept of HOG [1]. This technique exploits the concept of a locally normalized histogram as their feature set to detect the object. HOG is used when image is divided into cells and for each of the pixels within the cells a histogram of direction is calculated. The distribution of intensity within these pixels are used as a descriptor in analyzing the object's shape and appearance. Efficient pedestrian and cyclist detection systems can be developed by combining the HOG technique and a latent support vector machine (SVM). A line known as a hyperplane represents a SVM. This line divides a given plane into two parts and these parts can be considered two classes of objects. Hence a SVM classifier helps in putting the detected object to a particular category [37]. In object detection it often necessary to have object representations that are feature invariant and HOG can provide this feature. By combining HOG with a well-established classifier such as SVM, detection speed and accuracy can be improved [37]. Localization of these histogram features has an advantage in that the characterization of objects is performed by the direction of the gradient while not requiring the prior knowledge of the corresponding edge position. The next section gives a succinct description of how HOG works and how it was utilized for this study.

## The Part-Based Method

HOG utilizes a low level feature which is shown to outperform other competitive features, like wavelets. Firstly, Felzenszwalb et al. [38] computed an edge oriented histogram on a dense grid of uniformly spaced cells. The image pyramid is obtained by smoothing and scaling the original image, which is at the root of the pyramid. Smoothing in image
processing refers to selecting the important data and filtering out the noise or unwanted data. It can also be understood as averaging the data. Scaling is simply the number of pixels in an image. For example, if the original image consists of $100 \times 100$ pixels, scaling it up would mean the new image is $200 \times 200$ pixels. The next step in the research was to overlap the local contrast normalization to improve the algorithm's overall performance. The research team also used a SVM classifier to study models for human. SVM classifiers can also be considered supervised learning models with associated learning algorithms to analyze data which are used for classification.

Using local features to learn body parts is an efficient approach to human detection. Partbased methods model objects as a rigid or deformable configurations of subparts, which is shown to be very effective for handling issues of occlusion [39]. Let H be the HOG features of the image while the function $p=(x, y)$ represents the location of an area within the image. The detection score at location $\left(x_{o}, y_{o}\right)$ is defined in the work as:

$$
\begin{equation*}
\operatorname{score}\left(x_{0}, y_{0}\right)=b+\sum_{i=1}^{n} s\left(p_{i}\right) \tag{1}
\end{equation*}
$$

where, $b$ is the bias term, $n$ is the number of parts. The function $s\left(p_{i}\right)$ is the score of parts $i$ which is defined as:

$$
\begin{equation*}
s\left(p_{i}\right)=F_{p_{i}} * \emptyset\left(H, p_{i}\right)-d_{p_{i}} * \emptyset_{d}\left(d_{x}, d_{y}\right) \tag{2}
\end{equation*}
$$

where, $F_{p_{i}}$ is the part filter and $\emptyset\left(H, p_{i}\right)$ is the vector which is equal to the concatenation of the feature vectors from H . The parameter H is taken to be at the sub window of part $p_{i}\left(d_{x}, d_{y}\right)$ which is the displacement of the parts with respect to the root position.

Felzenszwalb et al. also used a star structured part-based model that consists of a root filter and a set of parts associated using a deformation model. A root filter is a simple filter and defined as an array of $n$-dimensional vectors. The root filter is designed to cover the entire object during the sliding of the window whereas the part filters cover the specific parts of the object. The score associated to each star model is the summation of the scores of the root filter. The parts of an object at a given location and scale minus a deformation cost, measures the deviation of parts from their ideal location relative to the root. The scores of the root and the parts are defined as the dot product of a learnt filter, which belongs to that part and a set of extracted features for that specific location. Also, a principle component analysis (PCA) has been applied to the HOG features in order to reduce the dimensionality.

In this study, the models are largely based on the pictorial structures framework from Felzenszwalb et al. All of the models use linear filters on dense feature maps. A feature map
is an array whose entries are d-dimensional feature vectors and are obtained from a dense grid of locations in an image. Every feature map represents a local image patch (a small local region of the image). A filter is defined by an array of d-dimensional weight vectors and is a rectangular template. The score or response of a filter $F$ at a position $(x, y)$ in a feature map $G$ is defined as follows:

$$
\begin{equation*}
\text { score }=\sum_{x^{\prime}, y^{\prime}} F\left[x^{\prime}, y^{\prime}\right] \cdot G\left[x+x^{\prime}, y+y^{\prime}\right] \tag{3}
\end{equation*}
$$

In order to define a score at different positions and varying scales in an image, a feature pyramid was used as discussed in the first paragraph, which specify a feature map for a finite number of scales in a fixed range. An example of a feature pyramid is shown in Figure 1.

A parameter $\lambda$ is defined as the number of levels of the pyramids. In this method, the authors set $\lambda$ as 5 and 10 to test the models. The star models are defined by a coarse root filter and as previously discussed, approximately cover the entire object, while the higher resolution part filters cover the smaller parts of the object.


Figure 1
Feature pyramid of a person model

The root filter location defines a detection window. The score of a hypothesis is defined by the difference of the scores of each filter at their respective locations and a deformation cost that depends on the relative position of each part with respect to the root plus a bias:

$$
\begin{equation*}
\text { score }=\sum_{i=0}^{n} F_{i}^{\prime} \cdot \emptyset\left(H, p_{i}\right)-\sum_{i=1}^{n} d_{i} \cdot \emptyset_{d}\left(d x_{i}, d y_{i}\right)+b \tag{4}
\end{equation*}
$$

where,

$$
\begin{equation*}
\left(d x_{i}, d y_{i}\right)=\left(x_{i}, y_{i}\right)-\left(2\left(x_{0}, y_{0}\right)+v_{i}\right) \tag{5}
\end{equation*}
$$

is the displacement of the i-th part relative to its root position and consists of the deformation features as shown below:

$$
\begin{equation*}
\emptyset_{d}(d x, d y)=\left(d x, d y, d x^{2}, d y^{2}\right) \tag{6}
\end{equation*}
$$

An overall score is computed for each root location according to the best possible placement of the parts by choosing the maximum score to detect objects,

$$
\begin{equation*}
\operatorname{score}\left(p_{0}\right)=\max _{p_{1} \ldots p_{n}} \operatorname{score}\left(p_{0}, p_{1}, \ldots p_{n}\right) \tag{7}
\end{equation*}
$$

In order to learn models of objects, the authors use a latent SVM classifier. Assume a classifier that scores an example $x$ with a function of the form:

$$
\begin{equation*}
f_{\beta}(x)=\max _{z \in Z(x)} \beta \cdot \Phi(x, z) \tag{8}
\end{equation*}
$$

where, $\beta$ is a vector of model parameters and the set $Z(x)$ consists of the possible latent values for an example $x . \beta$ is trained from labeled examples $\left.E=\left(\left\langle x_{1}, y_{1}\right\rangle, \ldots,<x_{n}, y_{n}\right\rangle\right)$, where $y_{i} \in\{-1,1\}$, by minimizing the objective function:

$$
\begin{equation*}
L_{D}(\beta)=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \max \left(0,1-y_{i} f_{\beta}\left(x_{i}\right)\right) \tag{9}
\end{equation*}
$$

where, $\max \left(0,1-y_{i} f_{\beta}\left(x_{i}\right)\right)$ is the standard hinge loss and the constant $C$ controls the relative weight of the regulation term.

Felzenszwalb et al. also introduced a 13-dimentional HOG feature set that includes both contrast sensitive and contrast insensitive features, ultimately improving performances for most classes of the PASCAL datasets. After HOG feature vectors are retrieved, a PCA was performed on these vectors to convert the values into a set of values of linearly uncorrelated variables. The use of lower dimensional features leads to models containing fewer parameters and speeds up the detection and training algorithm.

The goal in the PASCAL datasets is to predict the bounding boxes of objects. In this method, the authors utilize the configuration of an object hypothesis, $z$, to predict a bounding box for objects. It is implemented by using a function $c(z)$, to the upper-left and lower-right corners of the bounding box. The limitation of this method is that it does not consider deeper part hierarchies (parts within parts) or models with many components. This study chose the part-based method because it relies heavily on efficient methods for matching deformable models to images and the resulting output is generally accurate.

## Data Description and Analysis

## Site Selection

Five locations in Baton Rouge, LA, were chosen as the source of this project's video data. The sites were filmed daily to ensure that the footage was obtained for morning, afternoon, and evening hours. These locations had varying characteristics and densities of pedestrians and cyclists. Four of these sites were located near or on LSU campus as it was expected these locations would have fairly high volumes of pedestrians and cyclists. A brief description of each of the sites is given below.

Site 1: Government Street. This site, as shown in Figure 2, was located along Government Street, Baton Rouge. The site included a bike lane as well as a sidewalk. The review of video footage showed that this site had a very low density of both pedestrians and cyclists.


Figure 2
Pedestrian and cyclist at Site 1 Government Street

Site 2: Dalrymple Drive. The camera on this site was placed facing a crosswalk at the intersection of Highland Road and Dalrymple Drive. This site, shown in Figure 3, recorded a decent number of pedestrians on the route as well as plenty of cyclists.


Figure 3
Pedestrians and cyclist at Site 2 Dalrymple Drive

Site 3: CEBA Lane. The camera system on this site was set up facing the entrance of Patrick F. Taylor Hall (PFT) on the LSU campus, as seen in Figure 4. This site experienced heavy volumes of pedestrians, with the numbers peaking during class hours of the students. The number of cyclists observed in this site was limited however.


Figure 4
Pedestrians and cyclist at Site 3 CEBA Lane

Site 4: Nicholson Extension. The camera system was set up facing a crosswalk on Nicholson Drive Extension as shown in Figure 5. One side of the roadway had a major commuter parking lot and the other connected both the LSU Business Education Complex and Patrick F. Taylor Hall with walkways.


Figure 5
Pedestrians and cyclist at Site 4 Nicholson Drive Extension

Site 5: Student Union. The camera system was set up facing a cross walk in between the Student Union and the Barnes \& Noble as shown in Figure 6. This site experienced a considerable amount of pedestrians as it was a street intersection between the campus and busy road. The number of cyclists though were limited.


Figure 6
Pedestrians and cyclist at Site 5 Student Union

Two weather conditions occurred during the study which were either clear weather or rain. Additionally, the algorithm was tested for three lighting conditions: daytime, nighttime and twilight. The pedestrian and cyclist densities of the sites are tabulated in Table 1.

Table 1
Site pedestrian and cyclist densities

| Location Name | Density of Pedestrians | Density of Cyclists |
| :--- | :--- | :--- |
| Site 1 | Low | Low |
| Site 2 | Medium | High |
| Site 3 | High | Low |
| Site 4 | High | Medium |
| Site 5 | High | Low |

## Camera System Implementation

The camera system used in this study is JAMAR Portable Video Camera System (Serial Number: 201702001) and has a 64GB memory capacity for each filming. It can capture approximately 2 days of continuous footage with a standard resolution of $640 \times 480$ pixels and 4 to 9 hours with highest resolution at $1920 \times 1080$ pixels. This project utilized the standard resolution mode for capturing the video data. The height at which the camera is mounted on the pole was an average of 5.41 ft . and at an angle of 65-75 degrees from the pole for all sites.

The following is an itemized list of the components for the camera system including images as seen in Figure 7.

1. Pole mount
2. 12V Battery and Timer
3. Horus view camera
4. Battery
5. Hose clamp set
6. Battery Charger
7. Cable that connects the battery to the camera

(a) Pole Mount
(c) Horus View Camera


(b) 12V Battery and Timer

(d) Checking the Power of Battery


Figure 7

## Camera system set-up

## Data Collection

Data in the form of recorded video footage was collected using the camera system set-up at all five locations. The video data was captured on a 24 -hour basis. To be able to utilize HOG on the videos, all three steps need to be employed: detection, tracking, and classification. However, because of the limited time of the study, the research team focused solely on the detection element of the HOG algorithm.

Manual observation counts were used to provide the ground truth data for validation of the performance of the HOG technique. For each frame developed from the video footage, two research team members manually counted and recorded the number of pedestrians and cyclists to reduce possible errors due to human factors. The manual observations were compared with results of the HOG algorithm. Figures 8 and 9 show frames with HOG detection of pedestrians and cyclists respectively. Table 2 shows a truncated sample of how the counted data were compiled for one site. Appendix A presents compiled data for each of the sites.

## Data Analysis

To determine the accuracy of the HOG algorithm in accurately detecting pedestrians and cyclists in each video frame, the accuracy rate was calculated as follows:

$$
\begin{equation*}
\text { Accuracy Rate }=\left|\frac{\# \text { HoG Algorithm }}{\# \text { Manually Counted }}\right| * 100 \% \tag{10}
\end{equation*}
$$

where, \# HOG Algorithm refers to the number of pedestrians or cyclists that were detected, using the HOG algorithm, in all the frames for each site; and \# Manually Counted refers to
the corresponding ground truth data. The closer the calculated Accuracy Rate is to $100 \%$, the better the detection accuracy rate of the HOG algorithm.


Figure 8
HOG detection of pedestrian


Figure 9
HOG detection of cyclist

Table 2
Truncated presentation of compiled counts

|  |  | Manual Counting |  | HOG Algorithm |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FRAME <br> NUMBER | FRAME <br> CODE | \#PEDESTRIANS | \#CYCLIST | \#PEDESTRIANS | \#CYCLIST |
| FRAME <br> 1 | scene09265 | 1 | 0 | 0 | 0 |
| FRAME <br> 2 | scene09277 | 1 | 0 | 0 | 0 |
| FRAME <br> 3 | scene09289 | 1 | 0 | 0 | 0 |
| FRAME <br> 4 | scene09301 | 1 | 0 | 0 | 0 |
| FRAME <br> 5 | scene09313 | 1 | 0 | 0 | 0 |
| FRAME <br> 6 | scene64249 | 1 | 0 | 1 | 0 |
| FRAME <br> 7 | scene64261 | 1 | 0 | 0 | 0 |
| FRAME <br> 8 | scene64273 | 1 | 0 | 0 | 0 |
| FRAME <br> 9 | scene64285 | 1 | 1 | 0 | 0 |

## DISCUSSION OF RESULTS

The accuracy rates of the HOG algorithm in detecting pedestrians and cyclists at the different locations are presented in Table 3.

Table 3
Accuracy rates of pedestrian and cyclist detection at different sites

|  |  | PEDESTRIANS |  |  | CYCLISTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Site | Number <br> of <br> frames | Manually <br> Counted | HOG <br> Algorithm | Accuracy <br> Rate | Manually <br> Counted | HOG <br> Algorithm | Accuracy <br> Rate |
| 1 | 54 | 40 | 30 | $75 \%$ | 14 | 0 | 0 |
| 2 | 480 | 856 | 541 | $63 \%$ | 62 | 37 | $60 \%$ |
| 3 | 365 | 582 | 171 | $29 \%$ | 15 | 0 | 0 |
| 4 | 221 | 305 | 277 | $91 \%$ | 0 | 0 | N/A |
| 5 | 278 | 495 | 374 | $76 \%$ | 9 | 2 | $22 \%$ |

Overall, it can be seen that the accuracy rates ranged between $29-91 \%$ for detection of pedestrians, and between $0-60 \%$ for cyclists. This result was fairly poor but can be attributed to a number of reasons, such as occlusion, lighting condition and viewpoint angle of the camera.

The viewpoint angle was a major factor affecting the accuracy of the results. A consistent angle of mounting of camera is required for better accuracy. Another contributing factor for low accuracy rates is the rich background. This study was performed in the real environment, such as busy street, parking lot, and so on. It is possible for objects such as trees and poles to be detected as human beings. However, this did not appear to be a factor for this study as the algorithm under counted both pedestrians and cyclists.

Occlusion can also affect the accuracy rates of detection. When there are several people passing by the camera at the same time, some of them may not be detected or several of them may be detected as just one person if they are very close to each other. This is because low number of features could be detected in this case. Table 4 shows that occlusion could be a problem with this study as it can be seen that higher number of pedestrians in a frame resulted in poorer accuracy rates.

Lighting condition can also cause inaccuracy of detection. If the light is not bright enough, the pedestrian in the scene is not clear enough to be detected. In the future, the research team
hope to add a tracking element to count the number of pedestrians and cyclists. Tracking and counting will improve the performance of the algorithm.

While the overall accuracy rate of the HOG algorithm in detecting pedestrians and cyclists were poor, the research team investigated the effect of the density of pedestrians/cyclists on each frame to the accuracy rate. Tables 4 and 5 present the results of this exercise for pedestrians and cyclists respectively.

Table 4
Accuracy rates of pedestrian detection at different pedestrian densities

| Density | Number of <br> Frames | Manually <br> Counted | HOG Algorithm | Accuracy Rate |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 786 | 786 | 624 | $79 \%$ |
| 2 | 379 | 758 | 414 | $55 \%$ |
| 3 | 112 | 336 | 170 | $51 \%$ |
| 4 | 28 | 112 | 55 | $49 \%$ |
| 5 | 24 | 120 | 74 | $62 \%$ |
| 6 | 16 | 96 | 46 | $48 \%$ |
| 7 | 2 | 14 | 4 | $29 \%$ |
| 8 | 7 | 56 | 6 | $11 \%$ |

Table 4 shows that generally, the higher the number of pedestrians on a frame, the poorer the accuracy rate. Table 5 shows no trend and it could be because of the very limited density recorded on each frame as a result of the very low cyclist population of the sites investigated.

Table 5
Accuracy rates of cyclist detection at different cyclist densities

| Density | Number of <br> Frames | Manually <br> Counted | HOG Algorithm | Accuracy Rate |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 89 | 89 | 32 | $36 \%$ |
| 2 | 4 | 8 | 6 | $75 \%$ |
| 3 | 1 | 3 | 1 | $33 \%$ |

## CONCLUSIONS

The overall conclusion to be drawn from the literature and results is that automated data collection via video and image processing technology has grown to be an effective and feasible method for counting pedestrians and cyclists. While the collection of studies on newer technologies is not as robust as that of traditional ones, there is enough evidence to justify and guide the use of automated video count technology. To date, most researchers have developed unique algorithms and products in service to their agency or research goals rather than strictly replicating other methods to improve existing algorithm and deploy on a wide scale. Further research into using existing cameras, rather than new cameras, for collecting video data would be most beneficial as leveraging these sources could prove a huge benefit in terms of time and cost. Perfecting this method of automated data collection would greatly expand an already exciting technology growing in capacity. The implications of having a tested and efficient automated video-based count program will allow planners to add this method of data collection when deciding on research methods for count programs, and policymakers can trust the results in their decision-making.

This study aimed at developing such a system for pedestrian and cyclist detection. However, the limited study time meant that the research team focused on the detection part of the algorithm. A fully developed algorithm will be capable of detecting, tracking, and counting accurately. This study involved breaking video footage into subsequent frames and then utilizing the part-based method suggested by Felzenszwalb et al. for detecting the objects in the frames. The method relied heavily on exploiting the technique of HOG as well as a latent SVM classifier. The results of the pedestrian detection ranged between $29-91 \%$ and that of the cyclist detection spanned between $0-60 \%$. The results showcase a method which is efficient in terms of development within a limited time frame, despite having compromised accuracy. In the future, the research team plans to enrich the models in order to improve the accuracy rate. This feat would involve training the algorithm with a dataset considering various instances of true positives or various viewpoints of pedestrians and cyclists, as well as false positives such as background trees, buildings etc. In addition, the research team would like to add pedestrian-tracking and cyclist-tracking to the algorithm for counting. Tracking can also improve the accuracy rate significantly since from the tested data, the same object or person can be detected at some frames while not at other frames while being continuously extracted from the footage. Tracking would improve the results by capturing and storing the location of the object over successive frames.

## RECOMMENDATIONS

The research team recommends continuing this study in order to get acceptable accuracy for pedestrians and cyclist counts. Different scenarios should be considered and implemented to perform an accurate multi-object detection. Different light intensities, different video capturing time period, various motion patterns of tracked objects, and complex background are examples of such scenarios. In order to get an accurate pedestrians and cyclist counts, an accurate multi-object tracking algorithm should be added to avoid any false positive count process. An algorithm performing all of these operations will consume much time. Therefore, selecting high speed algorithms is the target of future work in order to be able to use the algorithm online to count pedestrians and cyclist. The final prototype that should be the aim to have in the future, is a remote-online program that can make an online count process $100 \%$ automated. This will save much effort and time when compared to traditional manual count processes.

# ACRONYMS, ABREVIATIONS, AND SYMBOLS 

| BPNN | Backpropagation Neural Network |
| :--- | :--- |
| CV | Computer Vision |
| DOTD | Louisiana Department of Transportation and Development |
| GMM | Gaussian Mixture Model |
| HOG | Histogram of Oriented Gradient |
| KF | Kalman Filter |
| LSU | Louisiana State University |
| LTRC | Louisiana Transportation Research Center |
| MPO | Metropolitan Planning Organization |
| PCA | Principle Component Analysis |
| PFT | Patrick F. Taylor Hall |
| PRC | Project Review Committee |
| SVM | Support Vector Machine |
| YOLO | You Only Look Once |

## REFERENCES

1. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE.
2. Sexton, G. G. and Zhang, X. (1994). "Automated Counting of Pedestrians." Appearing in: Visual Communications and Image Processing '94. Society of Photo-Optical Instrumentation Engineers. Chicago, IL, USA. Vol. 2308, 830-837.
3. Rogers, S. and Papanikolopoulos N. (2000). Bicycle Counter. Australian Road Research Board.
4. Malinovskiy, Y., Zheng, J. and Wang, Y. (2009). Model-free Video Detection and Tracking of Pedestrians and Bicyclists. Computer-Aided Civil and Infrastructure Engineering. Blackwell Publishing Inc. Vol. 24, No. 3, 157-168.
5. Somasundaram, G., Morellas, V. and Papanikolopoulos, N. (2009). "Counting Pedestrians and Bicycles in Traffic Scenes." 12th International IEEE Conference on Intelligent Transportation Systems, Monograph\#: 01573720.
6. Li, J., Shao, C., Xu, W. (2010). Real-time System for Tracking and Classification of Pedestrians and Bicycles. Transportation Research Record. National Research Council. No. 2198, 83-92.
7. Ling, B., Tiwari, S., and Li, Z. (2010). "A Multi-Pedestrian Detection and Counting System Using Fusion of Stereo Camera and Laser Scanner." Appearing in: Applications of Digital Image Processing XXXIII. SPIE. San Diego, CA, United states. Vol. 7798, The Society of Photo-Optical Instrumentation Engineers.
8. Belbachir, N., Schraml, S., and Brandle, N. (2010). "Real-time Classification of Pedestrians and Cyclists for Intelligent Counting of Non-Motorized Traffic." Appearing in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW IEEE Computer Society. San Francisco, CA, United states. 45-50.
9. Li, S., Sayed, T., and Zaki, M. (2012). "Automated Collection of Pedestrian Data Through Computer Vision Techniques." Transportation Research Record: Journal of the Transportation Research Board, 2012. Transportation Research Board. No. 2299, pp 121127.
10. Zaki, M., Sayed, T., and Cheung, A. (2013). "Computer Vision Techniques for the Automated Collection of Cyclist Data." Transportation Research Record: Journal of the Transportation Research Board. Transportation Research Board. No. 2387, pp 10-19.
11. Somasundaram, G., Morellas, V., and Papanikolopoulos, N. (2012). Deployment of Practical Methods for Counting Bicycle and Pedestrian Use of a Transportation Facility. University Transportation Centers Program, Accession\#: 01367253.
12. Shahraki, F., Yazdanpanah, A., Regentova, E., and Muthukumar, V. (2015). Bicycle Detection Using HOG, HSC and MLBP. Appearing in: 13 11th International Symposium on Advances in Visual Computing, ISVC. Springer Verlag. Las Vegas, USA, United states. Vol. 9475, 554-562.
13. Li, Y., Zhu, E., and Zhao, J. (2014). "Detecting and Counting Pedestrians in Real Time." Journal of Computational Information Systems, 2014. Binary Information Press. Vol. 10, No. 2, 827-835.
14. Zaki, M. and Sayed, T. (2016). Automated Cyclist Data Collection under High Density Conditions. IET Intelligent Transport Systems. Institution of Engineering and Technology. Vol. 10, No. 5, pp 361-369.
15. Zangenehpour, S., Romancyshyn, T., Miranda-Moreno, L., and Saunier, N. (2015). Video-based Automatic Counting for Short-term Bicycle Data Collection in a Variety of Environments. Transportation Research Board, TRB 94th Annual Meeting Compendium of Papers, Monograph \#: 01550057.
16. Kristoffersen, M., Dueholm, J., and Gade, R. (2016). Pedestrian Counting with Occlusion Handling Using Stereo Thermal Cameras. Sensors (Switzerland), 2016. MDPI AG. Vol. 16, No. 1.
17. Yuan, X., Wei, X., and Song, Y. (2011). Pedestrian Detection for Counting Applications Using a Top-view Camera. IEICE Trans.Inf.Syst. Maruzen Co., Ltd. Vol. E94-D, No. 6, 1269-1277.
18. Yu, Z., Gong, C., and Yang, J. (2014). Pedestrian Counting Based on Spatial and Temporal Analysis. Institute of Electrical and Electronics Engineers Inc. 2432-2436.
19. Lin, Y. and Liu, N. (2012). Integrating Bottom-up and Top-down Processes for Accurate Pedestrian Counting. Appearing in: 21st International Conference on Pattern Recognition, ICPR 2012, November 11, 2012 - November 15, 2012. Institute of Electrical and Electronics Engineers Inc. Tsukuba, Japan. 2508-2511.
20. Wang, Z., Hao, H., and Li, Y. (2012). Pedestrian Analysis and Counting System with Videos. Appearing in: 19th International Conference on Neural Information Processing, ICONIP. Springer Verlag. Doha, Qatar. Vol. 7667 LNCS, 91-99.
21. Eriksson, J. (2014). Leveraging Traffic and Surveillance Video Cameras for Urban Traffic. Civil Engineering Studies, Illinois Center for Transportation Series, 2014. University of Illinois, Urbana-Champaign. No. 14-024.
22. Hipp, Adlakha, Eyler, Chang, Pless. (2013). Emerging Technologies: Webcams and Crowd-sourcing to Identify Active Transportation.
23. Pires, B., Gong, J., Kaffine, C., Kocamaz, M. K., Kozar, J., Nunnagoppula, G. K., and Saksena, D. (2016). Automatic Counting of Pedestrians and Cyclists. Technologies for Safe and Efficient Transportation University Transportation Center.
24. Li, F., Zhang, R., and You, F. (2017). Fast Pedestrian Detection and Dynamic Tracking for Intelligent Vehicles within V2V Cooperative Environment. IET Image Processing.
25. Kurian, M. Z. (2011). Various Object Recognition Techniques for Computer Vision. Journal of Analysis and Computation, 7(1), 39-47.
26. Kuruppu, G., Manoj, C., Kodituwakku, S. R., and Pinidiyaarachchi, U. A. J. (2013, December). Comparison of Different Template Matching Algorithms in High Speed Sports Motion Tracking. In Industrial and Information Systems (ICIIS), 2013 8th IEEE International Conference on (pp. 445-448). IEEE.
27. Sun, M., and Savarese, S. (2014). "Model-Based Object Recognition." In Computer Vision (pp. 488-492). Springer US.
28. Lamdan, Y., Schwartz, J. T., and Wolfson, H. J. (1990). Affine Invariant Model-Based Object Recognition. IEEE Transactions on Robotics and Automation, 6(5), 578-589.
29. Selinger, A. and Nelson, R. C. (2000). Improving Appearance-Based Object Recognition in Cluttered Backgrounds. In Pattern Recognition, 2000. Proceedings. 15th International Conference on (Vol. 1, pp. 46-50). IEEE.
30. Malinovskiy, Y., Zheng, J., and Wang, Y. (2009). "Model Free Video Detection and Tracking of Pedestrians and Bicyclists." Computer Aided Civil and Infrastructure Engineering, 24(3), 157-168.
31. Yu, Z., Gong, C., Yang, J., and Bai, L. (2014, October). Pedestrian Counting Based on Spatial and Temporal Analysis. In Image Processing (ICIP), 2014 IEEE International Conference on (pp. 2432-2436). IEEE.
32. Ray, K. S., Asari, V. K., and Chakraborty, S. (2017). Object Detection by SpatioTemporal Analysis and Tracking of the Detected Objects in a Video with Variable Background. arXiv preprint arXiv:1705.02949.
33. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).
34. Kim, H., Lee, Y., Yim, B., Park, E., and Kim, H. (2016). On-Road Object Detection Using Deep Neural Network. In Consumer Electronics-Asia (ICCE-Asia), IEEE International Conference on (pp. 1-4). IEEE.
35. Li, X., Li, L., Flohr, F., Wang, J., Xiong, H., Bernhard, M., and Li, K. (2017). A Unified Framework for Concurrent Pedestrian and Cyclist Detection. IEEE transactions on intelligent transportation systems, 18(2), 269-281.
36. Liu, J., Gao, X., Bao, N., Tang, J., and Wu, G. (2017). Deep Convolutional Neural Networks for Pedestrian Detection with Skip Pooling. In Neural Networks (IJCNN), 2017 International Joint Conference on (pp. 2056-2063). IEEE.
37. Chen Z., Chen K. and Chen J., Vehicle and Pedestrian Detection Using Support Vector Machine and Histogram of Oriented Gradients Features. 2013 International Conference on Computer Sciences and Applications, 2013.
38. Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object Detection with Discriminatively Trained Part-Based Models. IEEE Transactions On Pattern Analysis and Machine Intelligence, 32(9), 1627-1645.
39. Dehghan, A., Idrees, H., Zamir, A. R., And Shah, M. (2014). Automatic Detection and Tracking of Pedestrians in Videos with Various Crowd Densities. In Pedestrian and Evacuation Dynamics 2012 (pp. 3-19). Springer, Cham.

## APPENDIX

## A. Detailed Compilation of Counts



| LOCAT TION: SITE 1 (GOVERNMENT STREET- BATON ROUGE) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FRAME 30 | scene129805 | 0 | 1 | 0 | 0 |
| FRAME 31 | scene129817 | 0 | 1 | 0 | 0 |
| FRAME 32 | scene129829 | 0 | 1 | 0 | 0 |
| FRAME 33 | scene145393 | 0 | 1 | 0 | 0 |
| FRAME 34 | scene145405 | 0 | 1 | 0 | 0 |
| FRAME 35 | scene145417 | 0 | 1 | 0 | 0 |
| FRAME 36 | scene145429 | 0 | 1 | 0 | 0 |
| FRAME 37 | scene145441 | 0 | 1 | 0 | 0 |
| FRAME 38 | scene145453 | 0 | 1 | 0 | 0 |
| FRAME 39 | scene145465 | 0 | 0 | 0 |  |
| FRAME 40 | scene159337 | 1 | 1 | 1 | 0 |
| FRAME 41 | scene159349 | 1 | 0 | 1 | 0 |
| FRAME 42 | scene159361 | 1 | 0 | 1 | 0 |
| FRAME 43 | scene159373 | 1 | 0 | 1 | 0 |
| FRAME 44 | scene159385 | 1 | 0 | 1 | 0 |
| FRAME 45 | scene159397 | 1 | 0 | 1 | 0 |
| FRAME 46 | scene159409 | 1 | 0 | 1 | 0 |
| FRAME 47 | scene159421 | 1 | 0 | 1 | 0 |
| FRAME 48 | scene159433 | 1 | 0 | 1 | 0 |
| FRAME 49 | scene159445 | 1 | 0 | 0 | 0 |
| FRAME 50 | scene159457 | 1 | 0 | 1 | 0 |
| FRAME 51 | scene159469 | 1 | 0 | 1 | 0 |
| FRAME 52 | scene159481 | 1 | 0 | 1 | 0 |
| FRAME 53 | scene159493 | 1 | 0 | 1 | 0 |
| FRAME 54 | scene159505 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, <br> 4:40:34 PM |  |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FRAME 1 | scene06721 | 1 | 0 | 1 | 0 |
| FRAME 2 | scene06733 | 1 | 0 | 0 | 0 |
| FRAME 3 | scene06745 | 1 | 0 | 1 | 0 |
| FRAME 4 | scene06757 | 1 | 0 | 0 | 0 |
| FRAME 5 | scene08305 | 1 | 0 | 1 | 0 |
| FRAME 6 | scene08317 | 1 | 0 | 1 | 0 |
| FRAME 7 | scene08329 | 1 | 0 | 1 | 0 |
| FRAME 8 | scene08341 | 1 | 0 | 1 | 0 |
| FRAME 9 | scene08353 | 1 | 0 | 1 | 0 |
| FRAME 10 | scene08365 | 1 | 0 | 1 | 0 |
| FRAME 11 | scene08377 | 1 | 0 | 1 | 0 |
| FRAME 12 | scene15013 | 1 | 0 | 1 | 0 |
| FRAME 13 | scene15025 | 1 | 0 | 1 | 0 |
| FRAME 14 | scene15037 | 1 | 0 | 1 | 0 |
| FRAME 15 | scene15181 | 1 | 0 | 2 | 0 |
| FRAME 16 | scene15193 | 1 | 0 | 1 | 0 |
| FRAME 17 | scene15205 | 1 | 0 | 0 | 0 |
| FRAME 18 | scene15217 | 1 | 0 | 1 | 0 |
| FRAME 19 | scene15229 | 1 | 0 | 0 | 0 |
| FRAME 20 | scene15373 | 2 | 0 | 0 | 0 |
| FRAME 21 | scene15385 | 2 | 0 | 1 | 0 |
| FRAME 22 | scene15469 | 2 | 0 | 1 | 0 |
| FRAME 23 | scene15481 | 2 | 0 | 2 | 0 |
| FRAME 24 | scene15493 | 2 | 0 | 2 | 0 |
| FRAME 25 | scene15505 | 2 | 0 | 1 | 0 |
| FRAME 26 | scene15517 | 2 | 0 | 1 | 0 |
| FRAME 27 | scene15529 | 2 | 0 | 1 | 0 |
| FRAME 28 | scene15541 | 2 | 0 | 2 | 0 |
| FRAME 29 | scene15553 | 2 | 0 | 1 | 0 |
| FRAME 30 | scene15565 | 2 | 0 | 1 | 0 |
| FRAME 31 | scene15577 | 2 | 0 | 1 | 0 |
| FRAME 32 | scene15589 | 2 | 0 | 1 | 0 |
| FRAME 33 | scene15601 | 2 | 0 | 1 | 0 |
| FRAME 34 | scene17053 | 2 | 0 | 2 | 0 |
| FRAME 35 | scene17185 | 2 | 0 | 2 | 0 |
| FRAME 36 | scene17197 | 2 | 0 | 1 | 0 |
| FRAME 37 | scene17209 | 2 | 0 | 1 | 0 |
| FRAME 38 | scene17221 | 2 | 0 | 2 | 0 |
| FRAME 39 | scene17233 | 2 | 0 | 1 | 0 |
| FRAME 40 | scene17305 | 1 | 0 | 1 | 0 |
| FRAME 41 | scene17317 | 1 | 0 | 1 | 0 |
| FRAME 42 | scene17329 | 1 | 0 | 1 | 0 |
| FRAME 43 | scene17341 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - 1 |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 44 | scene17377 | 1 | 0 | 1 | 0 |
| FRAME 45 | scene17389 | 1 | 0 | 1 | 0 |
| FRAME 46 | scene17401 | 1 | 0 | 1 | 0 |
| FRAME 47 | scene17473 | 1 | 0 | 1 | 0 |
| FRAME 48 | scene17617 | 1 | 0 | 1 | 0 |
| FRAME 49 | scene17629 | 1 | 0 | 0 | 0 |
| FRAME 50 | scene17641 | 1 | 0 | 0 | 0 |
| FRAME 51 | scene17653 | 1 | 0 | 0 | 0 |
| FRAME 52 | scene17833 | 0 | 1 | 0 | 1 |
| FRAME 53 | scene17845 | 0 | 1 | 0 | 1 |
| FRAME 54 | scene17857 | 0 | 1 | 0 | 1 |
| FRAME 55 | scene17869 | 0 | 1 | 0 | 1 |
| FRAME 56 | scene17881 | 0 | 1 | 0 | 1 |
| FRAME 57 | scene18745 | 1 | 0 | 0 | 0 |
| FRAME 58 | scene18757 | 1 | 0 | 0 | 0 |
| FRAME 59 | scene18769 | 1 | 0 | 1 | 0 |
| FRAME 60 | scene18781 | 1 | 0 | 1 | 0 |
| FRAME 61 | scene18793 | 1 | 0 | 1 | 0 |
| FRAME 62 | scene18805 | 1 | 0 | 0 | 0 |
| FRAME 63 | scene18817 | 1 | 0 | 0 | 0 |
| FRAME 64 | scene18829 | 1 | 0 | 1 | 0 |
| FRAME 65 | scene21841 | 1 | 0 | 1 | 0 |
| FRAME 66 | scene21853 | 1 | 0 | 2 | 0 |
| FRAME 67 | scene21865 | 1 | 0 | 1 | 0 |
| FRAME 68 | scene21877 | 1 | 0 | 1 | 0 |
| FRAME 69 | scene22177 | 0 | 1 | 0 | 1 |
| FRAME 70 | scene22189 | 0 | 1 | 0 | 1 |
| FRAME 71 | scene22201 | 0 | 1 | 0 | 1 |
| FRAME 72 | scene22465 | 1 | 0 | 1 | 0 |
| FRAME 73 | scene22477 | 1 | 0 | 1 | 0 |
| FRAME 74 | scene22489 | 1 | 0 | 0 | 0 |
| FRAME 75 | scene22501 | 1 | 0 | 0 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | $\begin{aligned} & \hline \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 76 | scene22513 | 1 | 0 | 1 | 0 |
| FRAME 77 | scene22525 | 1 | 0 | 0 | 0 |
| FRAME 78 | scene22537 | 1 | 0 | 1 | 0 |
| FRAME 79 | scene27013 | 3 | 0 | 0 | 0 |
| FRAME 80 | scene27025 | 3 | 0 | 0 | 0 |
| FRAME 81 | scene27037 | 3 | 0 | 0 | 0 |
| FRAME 82 | scene27049 | 3 | 0 | 0 | 0 |
| FRAME 83 | scene27061 | 3 | 0 | 2 | 0 |
| FRAME 84 | scene27073 | 3 | 0 | 1 | 0 |
| FRAME 85 | scene27085 | 1 | 0 | 1 | 0 |
| FRAME 86 | scene27097 | 1 | 0 | 1 | 0 |
| FRAME 87 | scene27109 | 1 | 0 | 1 | 0 |
| FRAME 88 | scene27121 | 2 | 0 | 1 | 0 |
| FRAME 89 | scene27373 | 1 | 0 | 0 | 0 |
| FRAME 90 | scene27385 | 1 | 0 | 1 | 0 |
| FRAME 91 | scene27397 | 1 | 0 | 1 | 0 |
| FRAME 92 | scene27409 | 1 | 0 | 1 | 0 |
| FRAME 93 | scene27421 | 1 | 0 | 0 | 0 |
| FRAME 94 | scene27433 | 1 | 0 | 0 | 0 |
| FRAME 95 | scene27445 | 1 | 0 | 1 | 0 |
| FRAME 96 | scene27541 | 1 | 0 | 1 | 0 |
| FRAME 97 | scene27553 | 1 | 0 | 1 | 0 |
| FRAME 98 | scene27565 | 1 | 0 | 1 | 0 |
| FRAME 99 | scene27577 | 1 | 0 | 1 | 0 |
| FRAME 100 | scene27613 | 1 | 0 | 1 | 0 |
| FRAME 101 | scene27625 | 1 | 0 | 1 | 0 |
| FRAME 102 | scene27661 | 1 | 0 | 1 | 0 |
| FRAME 103 | scene27673 | 1 | 0 | 1 | 0 |
| FRAME 104 | scene27685 | 1 | 0 | 1 | 0 |
| FRAME 105 | scene27697 | 1 | 0 | 1 | 0 |
| FRAME 106 | scene27709 | 1 | 0 | 1 | 0 |
| FRAME 107 | scene27721 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME NUMBER | $\begin{aligned} & \hline \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 108 | scene27733 | 1 | 0 | 1 | 0 |
| FRAME 109 | scene27853 | 1 | 0 | 1 | 0 |
| FRAME 110 | scene27865 | 1 | 0 | 1 | 0 |
| FRAME 111 | scene27877 | 2 | 0 | 1 | 0 |
| FRAME 112 | scene28273 | 2 | 0 | 2 | 0 |
| FRAME 113 | scene28285 | 2 | 0 | 2 | 0 |
| FRAME 114 | scene28297 | 2 | 0 | 2 | 0 |
| FRAME 115 | scene28309 | 2 | 0 | 3 | 0 |
| FRAME 116 | scene28321 | 2 | 0 | 2 | 0 |
| FRAME 117 | scene28333 | 2 | 0 | 1 | 0 |
| FRAME 118 | scene29161 | 1 | 0 | 1 | 0 |
| FRAME 119 | scene29173 | 1 | 0 | 1 | 0 |
| FRAME 120 | scene29185 | 1 | 0 | 1 | 0 |
| FRAME 121 | scene29197 | 1 | 0 | 1 | 0 |
| FRAME 122 | scene29245 | 1 | 0 | 1 | 0 |
| FRAME 123 | scene29257 | 1 | 0 | 1 | 0 |
| FRAME 124 | scene29269 | 1 | 0 | 1 | 0 |
| FRAME 125 | scene29413 | 1 | 0 | 1 | 0 |
| FRAME 126 | scene29425 | 1 | 0 | 1 | 0 |
| FRAME 127 | scene29437 | 1 | 0 | 1 | 0 |
| FRAME 128 | scene29449 | 1 | 0 | 1 | 0 |
| FRAME 129 | scene29461 | 1 | 0 | 1 | 0 |
| FRAME 130 | scene29473 | 1 | 0 | 1 | 0 |
| FRAME 131 | scene29533 | 1 | 0 | 1 | 0 |
| FRAME 132 | scene29545 | 1 | 0 | 1 | 0 |
| FRAME 133 | scene29557 | 1 | 0 | 2 | 0 |
| FRAME 134 | scene29569 | 1 | 0 | 1 | 0 |
| FRAME 135 | scene29677 | 1 | 0 | 2 | 0 |
| FRAME 136 | scene29689 | 1 | 0 | 1 | 0 |
| FRAME 137 | scene29701 | 1 | 0 | 1 | 0 |
| FRAME 138 | scene29821 | 0 | 1 | 0 | 1 |
| FRAME 139 | scene29833 | 0 | 2 | 0 | 1 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 140 | scene29845 | 0 | 3 | 0 | 1 |
| FRAME 141 | scene29857 | 0 | 2 | 0 | 2 |
| FRAME 142 | scene29869 | 0 | 2 | 0 | 2 |
| FRAME 143 | scene29881 | 0 | 2 | 0 | 1 |
| FRAME 144 | scene30133 | 1 | 0 | 1 | 0 |
| FRAME 145 | scene30145 | 1 | 0 | 1 | 0 |
| FRAME 146 | scene30157 | 1 | 0 | 1 | 0 |
| FRAME 147 | scene30181 | 1 | 0 | 1 | 0 |
| FRAME 148 | scene30193 | 1 | 0 | 1 | 0 |
| FRAME 149 | scene30973 | 1 | 0 | 1 | 0 |
| FRAME 150 | scene30985 | 1 | 0 | 1 | 0 |
| FRAME 151 | scene30997 | 1 | 0 | 1 | 0 |
| FRAME 152 | scene31009 | 1 | 0 | 1 | 0 |
| FRAME 153 | scene31021 | 1 | 0 | 0 | 0 |
| FRAME 154 | scene31033 | 1 | 0 | 1 | 0 |
| FRAME 155 | scene31045 | 1 | 0 | 1 | 0 |
| FRAME 156 | scene31441 | 2 | 0 | 0 | 0 |
| FRAME 157 | scene31453 | 2 | 0 | 1 | 0 |
| FRAME 158 | scene31465 | 2 | 0 | 1 | 0 |
| FRAME 159 | scene31477 | 2 | 0 | 0 | 0 |
| FRAME 160 | scene31489 | 2 | 0 | 0 | 0 |
| FRAME 161 | scene31501 | 2 | 0 | 1 | 0 |
| FRAME 162 | scene31513 | 2 | 0 | 0 | 0 |
| FRAME 163 | scene31561 | 2 | 0 | 0 | 0 |
| FRAME 164 | scene31573 | 2 | 0 | 0 | 0 |
| FRAME 165 | scene32257 | 1 | 0 | 1 | 0 |
| FRAME 166 | scene32269 | 2 | 0 | 1 | 0 |
| FRAME 167 | scene32281 | 2 | 0 | 1 | 0 |
| FRAME 168 | scene32293 | 2 | 0 | 1 | 0 |
| FRAME 169 | scene32305 | 2 | 0 | 1 | 0 |
| FRAME 170 | scene32317 | 2 | 0 | 0 | 0 |
| FRAME 171 | scene32329 | 2 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 172 | scene32341 | 1 | 0 | 1 | 0 |
| FRAME 173 | scene32353 | 1 | 0 | 1 | 0 |
| FRAME 174 | scene32365 | 1 | 0 | 1 | 0 |
| FRAME 175 | scene32413 | 1 | 0 | 1 | 0 |
| FRAME 176 | scene36013 | 1 | 0 | 1 | 0 |
| FRAME 177 | scene36025 | 1 | 0 | 1 | 0 |
| FRAME 178 | scene36037 | 1 | 0 | 1 | 0 |
| FRAME 179 | scene36049 | 1 | 0 | 1 | 0 |
| FRAME 180 | scene36061 | 1 | 0 | 1 | 0 |
| FRAME 181 | scene36073 | 1 | 0 | 1 | 0 |
| FRAME 182 | scene36085 | 1 | 0 | 1 | 0 |
| FRAME 183 | scene36661 | 1 | 0 | 2 | 0 |
| FRAME 184 | scene36673 | 1 | 0 | 1 | 0 |
| FRAME 185 | scene36685 | 1 | 0 | 3 | 0 |
| FRAME 186 | scene36697 | 1 | 0 | 2 | 0 |
| FRAME 187 | scene36709 | 1 | 0 | 2 | 0 |
| FRAME 188 | scene40393 | 1 | 0 | 1 | 0 |
| FRAME 189 | scene40405 | 1 | 0 | 1 | 0 |
| FRAME 190 | scene40417 | 1 | 0 | 1 | 0 |
| FRAME 191 | scene40429 | 1 | 0 | 1 | 0 |
| FRAME 192 | scene41341 | 2 | 0 | 2 | 0 |
| FRAME 193 | scene41353 | 2 | 0 | 1 | 0 |
| FRAME 194 | scene41365 | 2 | 0 | 1 | 0 |
| FRAME 195 | scene41377 | 2 | 0 | 1 | 0 |
| FRAME 196 | scene41929 | 3 | 0 | 3 | 0 |
| FRAME 197 | scene42025 | 4 | 1 | 2 | 0 |
| FRAME 198 | scene42037 | 4 | 1 | 2 | 0 |
| FRAME 199 | scene42073 | 3 | 1 | 2 | 1 |
| FRAME 200 | scene42085 | 3 | 1 | 2 | 1 |
| FRAME 201 | scene42109 | 3 | 1 | 1 | 0 |
| FRAME 202 | scene42121 | 3 | 1 | 1 | 1 |
| FRAME 203 | scene42133 | 3 | 1 | 2 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
|  |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 204 | scene42145 | 3 | 1 | 1 | 0 |
| FRAME 205 | scene42157 | 2 | 1 | 1 | 1 |
| FRAME 206 | scene42169 | 2 | 1 | 1 | 1 |
| FRAME 207 | scene42181 | 3 | 1 | 1 | 1 |
| FRAME 208 | scene42277 | 4 | 1 | 2 | 0 |
| FRAME 209 | scene42289 | 4 | 1 | 2 | 0 |
| FRAME 210 | scene42337 | 5 | 1 | 3 | 0 |
| FRAME 211 | scene42349 | 6 | 1 | 2 | 1 |
| FRAME 212 | scene42361 | 6 | 1 | 3 | 1 |
| FRAME 213 | scene42373 | 6 | 1 | 3 | 1 |
| FRAME 214 | scene42385 | 6 | 1 | 3 | 1 |
| FRAME 215 | scene42397 | 5 | 1 | 3 | 1 |
| FRAME 216 | scene42409 | 6 | 1 | 2 | 1 |
| FRAME 217 | scene42421 | 4 | 1 | 3 | 1 |
| FRAME 218 | scene42481 | 4 | 1 | 0 | 0 |
| FRAME 219 | scene42493 | 4 | 1 | 3 | 0 |
| FRAME 220 | scene42505 | 6 | 1 | 5 | 0 |
| FRAME 221 | scene42517 | 6 | 1 | 4 | 0 |
| FRAME 222 | scene42529 | 6 | 1 | 2 | 0 |
| FRAME 223 | scene42541 | 6 | 1 | 4 | 0 |
| FRAME 224 | scene42553 | 5 | 1 | 3 | 0 |
| FRAME 225 | scene42565 | 6 | 1 | 4 | 1 |
| FRAME 226 | scene42577 | 4 | 1 | 3 | 1 |
| FRAME 227 | scene46405 | 1 | 0 | 1 | 0 |
| FRAME 228 | scene46417 | 1 | 0 | 1 | 0 |
| FRAME 229 | scene46429 | 1 | 0 | 1 | 0 |
| FRAME 230 | scene46441 | 1 | 0 | 1 | 0 |
| FRAME 231 | scene46453 | 1 | 0 | 1 | 0 |
| FRAME 232 | scene46465 | 1 | 0 | 0 | 0 |
| FRAME 233 | scene46537 | 1 | 0 | 1 | 0 |
| FRAME 234 | scene46549 | 1 | 0 | 1 | 0 |
| FRAME 235 | scene47293 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - 1 |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  |  | L |  |  |
|  |  | Manual Cou |  | Algorithm D |  |
| FRAME NUMBER | $\begin{aligned} & \hline \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 236 | scene47305 | 1 | 0 | 1 | 0 |
| FRAME 237 | scene47317 | 1 | 0 | 0 | 0 |
| FRAME 238 | scene47329 | 1 | 0 | 0 | 0 |
| FRAME 239 | scene47341 | 1 | 0 | 0 | 0 |
| FRAME 240 | scene48109 | 0 | 1 | 0 | 0 |
| FRAME 241 | scene48121 | 0 | 1 | 0 | 0 |
| FRAME 242 | scene48133 | 0 | 1 | 0 | 1 |
| FRAME 243 | scene48145 | 0 | 1 | 0 | 1 |
| FRAME 244 | scene48361 | 2 | 0 | 1 | 0 |
| FRAME 245 | scene48373 | 2 | 0 | 1 | 0 |
| FRAME 246 | scene48409 | 2 | 0 | 0 | 0 |
| FRAME 247 | scene48421 | 3 | 0 | 1 | 0 |
| FRAME 248 | scene48433 | 3 | 0 | 1 | 0 |
| FRAME 249 | scene48445 | 3 | 0 | 1 | 0 |
| FRAME 250 | scene48457 | 1 | 0 | 1 | 0 |
| FRAME 251 | scene48709 | 1 | 0 | 1 | 0 |
| FRAME 252 | scene48721 | 1 | 0 | 1 | 0 |
| FRAME 253 | scene48733 | 1 | 0 | 1 | 0 |
| FRAME 254 | scene48745 | 1 | 0 | 0 | 0 |
| FRAME 255 | scene48889 | 1 | 0 | 0 | 0 |
| FRAME 256 | scene48901 | 1 | 0 | 1 | 0 |
| FRAME 257 | scene48913 | 1 | 0 | 1 | 0 |
| FRAME 258 | scene48925 | 1 | 0 | 1 | 0 |
| FRAME 259 | scene48937 | 2 | 0 | 1 | 0 |
| FRAME 260 | scene48949 | 2 | 0 | 2 | 0 |
| FRAME 261 | scene48961 | 2 | 0 | 2 | 0 |
| FRAME 262 | scene48973 | 2 | 0 | 2 | 0 |
| FRAME 263 | scene49153 | 3 | 0 | 2 | 0 |
| FRAME 264 | scene49165 | 2 | 0 | 1 | 0 |
| FRAME 265 | scene49177 | 2 | 0 | 1 | 0 |
| FRAME 266 | scene49189 | 3 | 0 | 1 | 0 |
| FRAME 267 | scene49201 | 3 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
|  |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 268 | scene49213 | 3 | 0 | 1 | 0 |
| FRAME 269 | scene49225 | 3 | 0 | 2 | 0 |
| FRAME 270 | scene49237 | 3 | 0 | 2 | 0 |
| FRAME 271 | scene49261 | 3 | 0 | 2 | 0 |
| FRAME 272 | scene49273 | 3 | 0 | 0 | 0 |
| FRAME 273 | scene49441 | 2 | 0 | 1 | 0 |
| FRAME 274 | scene49453 | 3 | 0 | 2 | 0 |
| FRAME 275 | scene49465 | 3 | 0 | 1 | 0 |
| FRAME 276 | scene49477 | 3 | 0 | 2 | 0 |
| FRAME 277 | scene49489 | 3 | 0 | 2 | 0 |
| FRAME 278 | scene49501 | 3 | 0 | 2 | 0 |
| FRAME 279 | scene49513 | 3 | 0 | 1 | 0 |
| FRAME 280 | scene50041 | 2 | 0 | 0 | 0 |
| FRAME 281 | scene50053 | 2 | 0 | 1 | 0 |
| FRAME 282 | scene50065 | 2 | 0 | 1 | 0 |
| FRAME 283 | scene50365 | 1 | 0 | 0 | 0 |
| FRAME 284 | scene50377 | 2 | 0 | 0 | 0 |
| FRAME 285 | scene50389 | 2 | 0 | 2 | 0 |
| FRAME 286 | scene50401 | 2 | 0 | 2 | 0 |
| FRAME 287 | scene50413 | 2 | 0 | 1 | 0 |
| FRAME 288 | scene50425 | 2 | 0 | 1 | 0 |
| FRAME 289 | scene50437 | 2 | 0 | 1 | 0 |
| FRAME 290 | scene50449 | 2 | 0 | 2 | 0 |
| FRAME 291 | scene50461 | 2 | 0 | 1 | 0 |
| FRAME 292 | scene50473 | 2 | 0 | 2 | 0 |
| FRAME 293 | scene50485 | 2 | 0 | 2 | 0 |
| FRAME 294 | scene50497 | 2 | 0 | 2 | 0 |
| FRAME 295 | scene53173 | 2 | 0 | 1 | 0 |
| FRAME 296 | scene53185 | 2 | 0 | 1 | 0 |
| FRAME 297 | scene53209 | 2 | 0 | 2 | 0 |
| FRAME 298 | scene53221 | 2 | 1 | 2 | 1 |
| FRAME 299 | scene53233 | 2 | 1 | 1 | 1 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 300 | scene53245 | 2 | 1 | 1 | 1 |
| FRAME 301 | scene53257 | 2 | 0 | 2 | 0 |
| FRAME 302 | scene54781 | 2 | 0 | 1 | 0 |
| FRAME 303 | scene54793 | 2 | 0 | 1 | 0 |
| FRAME 304 | scene54805 | 2 | 0 | 1 | 0 |
| FRAME 305 | scene54817 | 2 | 0 | 1 | 0 |
| FRAME 306 | scene54829 | 2 | 0 | 2 | 0 |
| FRAME 307 | scene54841 | 1 | 0 | 1 | 0 |
| FRAME 308 | scene54877 | 1 | 0 | 0 | 0 |
| FRAME 309 | scene54889 | 1 | 0 | 0 | 0 |
| FRAME 310 | scene55609 | 2 | 0 | 1 | 0 |
| FRAME 311 | scene55621 | 2 | 0 | 1 | 0 |
| FRAME 312 | scene55633 | 2 | 0 | 2 | 0 |
| FRAME 313 | scene55645 | 2 | 0 | 1 | 0 |
| FRAME 314 | scene55657 | 2 | 0 | 1 | 0 |
| FRAME 315 | scene55669 | 2 | 0 | 1 | 0 |
| FRAME 316 | scene55681 | 2 | 0 | 1 | 0 |
| FRAME 317 | scene55753 | 1 | 0 | 0 | 0 |
| FRAME 318 | scene55897 | 1 | 0 | 0 | 0 |
| FRAME 319 | scene56101 | 2 | 1 | 1 | 0 |
| FRAME 320 | scene56113 | 2 | 1 | 1 | 0 |
| FRAME 321 | scene56221 | 1 | 0 | 1 | 0 |
| FRAME 322 | scene56233 | 1 | 0 | 1 | 0 |
| FRAME 323 | scene56245 | 1 | 0 | 1 | 0 |
| FRAME 324 | scene57361 | 1 | 0 | 1 | 0 |
| FRAME 325 | scene57373 | 1 | 0 | 1 | 0 |
| FRAME 326 | scene57385 | 1 | 0 | 1 | 0 |
| FRAME 327 | scene57397 | 1 | 0 | 2 | 0 |
| FRAME 328 | scene57409 | 1 | 0 | 1 | 0 |
| FRAME 329 | scene57421 | 1 | 0 | 0 | 0 |
| FRAME 330 | scene58945 | 2 | 0 | 1 | 0 |
| FRAME 331 | scene58957 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 332 | scene58969 | 2 | 0 | 2 | 0 |
| FRAME 333 | scene58981 | 3 | 0 | 2 | 0 |
| FRAME 334 | scene58993 | 3 | 0 | 2 | 0 |
| FRAME 335 | scene59089 | 2 | 0 | 1 | 0 |
| FRAME 336 | scene59101 | 2 | 0 | 1 | 0 |
| FRAME 337 | scene59125 | 2 | 0 | 1 | 0 |
| FRAME 338 | scene59137 | 2 | 0 | 1 | 0 |
| FRAME 339 | scene59149 | 2 | 0 | 2 | 0 |
| FRAME 340 | scene59161 | 2 | 0 | 1 | 0 |
| FRAME 341 | scene59233 | 1 | 0 | 1 | 0 |
| FRAME 342 | scene59245 | 1 | 0 | 1 | 0 |
| FRAME 343 | scene59293 | 2 | 0 | 1 | 0 |
| FRAME 344 | scene59305 | 2 | 0 | 1 | 0 |
| FRAME 345 | scene59317 | 2 | 0 | 1 | 0 |
| FRAME 346 | scene59353 | 3 | 0 | 1 | 0 |
| FRAME 347 | scene59365 | 3 | 0 | 1 | 0 |
| FRAME 348 | scene59377 | 3 | 0 | 1 | 0 |
| FRAME 349 | scene59389 | 3 | 0 | 1 | 0 |
| FRAME 350 | scene59401 | 3 | 0 | 1 | 0 |
| FRAME 351 | scene59413 | 3 | 0 | 1 | 0 |
| FRAME 352 | scene59425 | 3 | 0 | 2 | 0 |
| FRAME 353 | scene59545 | 2 | 0 | 1 | 0 |
| FRAME 354 | scene59653 | 2 | 0 | 2 | 0 |
| FRAME 355 | scene59665 | 3 | 0 | 2 | 0 |
| FRAME 356 | scene59689 | 3 | 0 | 1 | 0 |
| FRAME 357 | scene59701 | 4 | 0 | 1 | 0 |
| FRAME 358 | scene59713 | 4 | 0 | 1 | 0 |
| FRAME 359 | scene59797 | 5 | 0 | 4 | 0 |
| FRAME 360 | scene59809 | 5 | 0 | 4 | 0 |
| FRAME 361 | scene59821 | 5 | 0 | 4 | 0 |
| FRAME 362 | scene59833 | 5 | 0 | 3 | 0 |
| FRAME 363 | scene59845 | 3 | 0 | 3 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - 1 |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  |  | - |  |  |
|  |  | Manual Coun |  | Algorithm D |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 364 | scene59857 | 3 | 0 | 3 | 0 |
| FRAME 365 | scene59869 | 2 | 0 | 1 | 0 |
| FRAME 366 | scene59881 | 1 | 0 | 1 | 0 |
| FRAME 367 | scene59893 | 1 | 0 | 1 | 0 |
| FRAME 368 | scene59917 | 2 | 0 | 1 | 0 |
| FRAME 369 | scene59929 | 2 | 0 | 1 | 0 |
| FRAME 370 | scene59941 | 2 | 0 | 1 | 0 |
| FRAME 371 | scene59989 | 2 | 0 | 1 | 0 |
| FRAME 372 | scene60001 | 2 | 0 | 1 | 0 |
| FRAME 373 | scene60085 | 2 | 0 | 2 | 0 |
| FRAME 374 | scene60097 | 2 | 0 | 2 | 0 |
| FRAME 375 | scene60109 | 2 | 0 | 2 | 0 |
| FRAME 376 | scene60121 | 2 | 0 | 2 | 0 |
| FRAME 377 | scene60133 | 2 | 0 | 2 | 0 |
| FRAME 378 | scene60145 | 2 | 0 | 2 | 0 |
| FRAME 379 | scene60193 | 2 | 0 | 2 | 0 |
| FRAME 380 | scene60205 | 2 | 0 | 1 | 0 |
| FRAME 381 | scene60217 | 2 | 0 | 1 | 0 |
| FRAME 382 | scene60229 | 2 | 0 | 1 | 0 |
| FRAME 383 | scene60241 | 2 | 0 | 1 | 0 |
| FRAME 384 | scene60253 | 2 | 0 | 2 | 0 |
| FRAME 385 | scene60265 | 2 | 0 | 2 | 0 |
| FRAME 386 | scene63865 | 1 | 0 | 1 | 0 |
| FRAME 387 | scene63877 | 1 | 0 | 1 | 0 |
| FRAME 388 | scene63889 | 1 | 0 | 0 | 0 |
| FRAME 389 | scene65113 | 2 | 0 | 1 | 0 |
| FRAME 390 | scene65125 | 2 | 0 | 1 | 0 |
| FRAME 391 | scene65137 | 3 | 0 | 2 | 0 |
| FRAME 392 | scene65149 | 3 | 0 | 3 | 0 |
| FRAME 393 | scene65161 | 3 | 0 | 3 | 0 |
| FRAME 394 | scene65173 | 3 | 0 | 3 | 0 |
| FRAME 395 | scene65185 | 3 | 0 | 1 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
|  |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | $\begin{aligned} & \hline \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 396 | scene65197 | 3 | 0 | 2 | 0 |
| FRAME 397 | scene65209 | 3 | 0 | 2 | 0 |
| FRAME 398 | scene66349 | 1 | 0 | 1 | 0 |
| FRAME 399 | scene66361 | 1 | 0 | 1 | 0 |
| FRAME 400 | scene66373 | 1 | 0 | 1 | 0 |
| FRAME 401 | scene66385 | 2 | 0 | 1 | 0 |
| FRAME 402 | scene66397 | 2 | 0 | 0 | 0 |
| FRAME 403 | scene66409 | 1 | 0 | 1 | 0 |
| FRAME 404 | scene67045 | 1 | 0 | 0 | 0 |
| FRAME 405 | scene67057 | 1 | 0 | 1 | 0 |
| FRAME 406 | scene67069 | 1 | 0 | 1 | 0 |
| FRAME 407 | scene67081 | 1 | 0 | 1 | 0 |
| FRAME 408 | scene67093 | 1 | 0 | 1 | 0 |
| FRAME 409 | scene67105 | 1 | 0 | 1 | 0 |
| FRAME 410 | scene67117 | 1 | 0 | 1 | 0 |
| FRAME 411 | scene67129 | 1 | 0 | 1 | 0 |
| FRAME 412 | scene67141 | 1 | 0 | 1 | 0 |
| FRAME 413 | scene67153 | 1 | 0 | 1 | 0 |
| FRAME 414 | scene67165 | 1 | 0 | 1 | 0 |
| FRAME 415 | scene67609 | 2 | 0 | 1 | 0 |
| FRAME 416 | scene67621 | 1 | 0 | 1 | 0 |
| FRAME 417 | scene67633 | 1 | 0 | 1 | 0 |
| FRAME 418 | scene67645 | 1 | 0 | 1 | 0 |
| FRAME 419 | scene67657 | 1 | 0 | 1 | 0 |
| FRAME 420 | scene67669 | 1 | 0 | 0 | 0 |
| FRAME 421 | scene69313 | 0 | 1 | 0 | 0 |
| FRAME 422 | scene69325 | 0 | 1 | 0 | 0 |
| FRAME 423 | scene69337 | 0 | 1 | 0 | 1 |
| FRAME 424 | scene70669 | 1 | 0 | 1 | 0 |
| FRAME 425 | scene70681 | 1 | 0 | 1 | 0 |
| FRAME 426 | scene70693 | 1 | 0 | 1 | 0 |
| FRAME 427 | scene70861 | 2 | 0 | 2 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | $\begin{aligned} & \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 428 | scene70873 | 2 | 0 | 2 | 0 |
| FRAME 429 | scene70885 | 2 | 0 | 1 | 0 |
| FRAME 430 | scene70897 | 1 | 0 | 1 | 0 |
| FRAME 431 | scene70909 | 1 | 0 | 1 | 0 |
| FRAME 432 | scene70921 | 1 | 0 | 1 | 0 |
| FRAME 433 | scene70933 | 1 | 0 | 0 | 0 |
| FRAME 434 | scene74377 | 3 | 0 | 3 | 0 |
| FRAME 435 | scene74389 | 3 | 0 | 2 | 0 |
| FRAME 436 | scene74401 | 2 | 0 | 1 | 0 |
| FRAME 437 | scene74413 | 2 | 0 | 0 | 0 |
| FRAME 438 | scene74425 | 2 | 0 | 1 | 0 |
| FRAME 439 | scene74437 | 2 | 0 | 1 | 0 |
| FRAME 440 | scene74473 | 2 | 0 | 2 | 0 |
| FRAME 441 | scene74485 | 2 | 0 | 1 | 0 |
| FRAME 442 | scene74497 | 2 | 0 | 1 | 0 |
| FRAME 443 | scene76873 | 2 | 0 | 1 | 0 |
| FRAME 444 | scene76875 | 2 | 0 | 1 | 0 |
| FRAME 445 | scene76897 | 2 | 0 | 0 | 0 |
| FRAME 446 | scene76909 | 1 | 0 | 0 | 0 |
| FRAME 447 | scene76921 | 2 | 0 | 1 | 0 |
| FRAME 448 | scene76933 | 2 | 0 | 1 | 0 |
| FRAME 449 | scene76945 | 2 | 0 | 1 | 0 |
| FRAME 450 | scene78085 | 1 | 0 | 0 | 0 |
| FRAME 451 | scene78097 | 1 | 0 | 1 | 0 |
| FRAME 452 | scene78109 | 1 | 0 | 1 | 0 |
| FRAME 453 | scene78121 | 1 | 0 | 1 | 0 |
| FRAME 454 | scene78385 | 3 | 0 | 1 | 0 |
| FRAME 455 | scene78397 | 3 | 0 | 1 | 0 |
| FRAME 456 | scene78409 | 3 | 0 | 1 | 0 |
| FRAME 457 | scene78421 | 3 | 0 | 1 | 0 |
| FRAME 458 | scene78433 | 2 | 0 | 2 | 0 |
| FRAME 459 | scene78445 | 4 | 0 | 2 | 0 |


| LOCATION: SITE 2 (DARYMPLE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 219-(1) |  |  |  |  |  |
| DATE AND TIME: Wednesday, October 25, 2017, 4:40:34 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 480 |  |  |  |  |  |
|  |  | Manual Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME NUMBER | $\begin{aligned} & \hline \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 460 | scene78457 | 4 | 0 | 2 | 0 |
| FRAME 461 | scene78469 | 3 | 0 | 2 | 0 |
| FRAME 462 | scene78481 | 3 | 0 | 3 | 0 |
| FRAME 463 | scene78493 | 4 | 0 | 3 | 0 |
| FRAME 464 | scene78505 | 5 | 0 | 2 | 0 |
| FRAME 465 | scene78517 | 4 | 0 | 1 | 0 |
| FRAME 466 | scene78529 | 5 | 0 | 3 | 0 |
| FRAME 467 | scene78541 | 4 | 0 | 0 | 0 |
| FRAME 468 | scene82465 | 1 | 0 | 1 | 0 |
| FRAME 469 | scene82477 | 1 | 0 | 1 | 0 |
| FRAME 470 | scene82489 | 1 | 0 | 1 | 0 |
| FRAME 471 | scene82513 | 1 | 0 | 0 | 0 |
| FRAME 472 | scene82525 | 1 | 0 | 0 | 0 |
| FRAME 473 | scene82537 | 1 | 0 | 0 | 0 |
| FRAME 474 | scene82549 | 1 | 0 | 0 | 0 |
| FRAME 475 | scene82981 | 1 | 0 | 1 | 0 |
| FRAME 476 | scene82993 | 1 | 0 | 1 | 0 |
| FRAME 477 | scene83005 | 1 | 0 | 1 | 0 |
| FRAME 478 | scene83017 | 1 | 0 | 0 | 0 |
| FRAME 479 | scene83029 | 1 | 0 | 0 | 0 |
| FRAME 480 | scene83041 | 1 | 0 | 0 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  |  | T |  |  |
|  |  | Manul Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# OF <br> PEDESTRIANS | \#OF <br> CYCLIST | $\begin{aligned} & \text { \# OF } \\ & \text { PEDESTRIANS } \end{aligned}$ | \#OF CYCLIST |
| FRAME 1 | scene01597 | 2 | 0 | 1 | 0 |
| FRAME 2 | scene01609 | 2 | 0 | 0 | 0 |
| FRAME 3 | scene01621 | 2 | 0 | 0 | 0 |
| FRAME 4 | scene01633 | 2 | 0 | 0 | 0 |
| FRAME 5 | scene01645 | 2 | 0 | 0 | 0 |
| FRAME 6 | scene01657 | 2 | 0 | 0 | 0 |
| FRAME 7 | scene01669 | 2 | 0 | 0 | 0 |
| FRAME 8 | scene01681 | 2 | 0 | 0 | 0 |
| FRAME 9 | scene01693 | 2 | 0 | 0 | 0 |
| FRAME 10 | scene01705 | 2 | 0 | 0 | 0 |
| FRAME 11 | scene01717 | 3 | 0 | 0 | 0 |
| FRAME 12 | scene01729 | 3 | 0 | 0 | 0 |
| FRAME 13 | scene01741 | 3 | 0 | 0 | 0 |
| FRAME 14 | scene01753 | 3 | 0 | 1 | 0 |
| FRAME 15 | scene01765 | 2 | 0 | 0 | 0 |
| FRAME 16 | scene01777 | 2 | 0 | 0 | 0 |
| FRAME 17 | scene01789 | 2 | 0 | 0 | 0 |
| FRAME 18 | scene01801 | 2 | 0 | 0 | 0 |
| FRAME 19 | scene01813 | 2 | 0 | 0 | 0 |
| FRAME 20 | scene01825 | 2 | 0 | 0 | 0 |
| FRAME 21 | scene01837 | 2 | 0 | 0 | 0 |
| FRAME 22 | scene01849 | 2 | 0 | 1 | 0 |
| FRAME 23 | scene01861 | 1 | 0 | 0 | 0 |
| FRAME 24 | scene01873 | 1 | 0 | 0 | 0 |
| FRAME 25 | scene01885 | 1 | 0 | 0 | 0 |
| FRAME 26 | scene01897 | 1 | 0 | 2 | 0 |
| FRAME 27 | scene01909 | 1 | 0 | 0 | 0 |
| FRAME 28 | scene01921 | 1 | 0 | 0 | 0 |
| FRAME 29 | scene01933 | 1 | 0 | 0 | 0 |
| FRAME 30 | scene01945 | 1 | 0 | 0 | 0 |
| FRAME 31 | scene02689 | 2 | 0 | 0 | 0 |




| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  | Manul Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME | FRAME | \# OF | \#OF | \# OF | \#OF CYCLIST |
| NUMBER | CODE | PEDESTRIANS | CYCLIST | PEDESTRIANS |  |
| FRAME 96 | scene13597 | 3 | 0 | 0 | 0 |
| FRAME 97 | scene13609 | 3 | 0 | 0 | 0 |
| FRAME 98 | scene14881 | 1 | 0 | 0 | 0 |
| FRAME 99 | scene14893 | 1 | 0 | 1 | 0 |
| FRAME 100 | scene14905 | 1 | 0 | 1 | 0 |
| FRAME 101 | scene14917 | 1 | 0 | 1 | 0 |
| FRAME 102 | scene14929 | 1 | 0 | 1 | 0 |
| FRAME 103 | scene16693 | 1 | 0 | 0 | 0 |
| FRAME 104 | scene16705 | 1 | 0 | 0 | 0 |
| FRAME 105 | scene16717 | 1 | 0 | 0 | 0 |
| FRAME 106 | scene17605 | 1 | 0 | 1 | 0 |
| FRAME 107 | scene17617 | 1 | 0 | 1 | 0 |
| FRAME 108 | scene17629 | 1 | 0 | 2 | 0 |
| FRAME 109 | scene17641 | 1 | 0 | 0 | 0 |
| FRAME 110 | scene19561 | 1 | 0 | 0 | 0 |
| FRAME 111 | scene19573 | 1 | 0 | 0 | 0 |
| FRAME 112 | scene19585 | 1 | 0 | 0 | 0 |
| FRAME 113 | scene19597 | 1 | 0 | 0 | 0 |
| FRAME 114 | scene19609 | 1 | 0 | 0 | 0 |
| FRAME 115 | scene19621 | 1 | 0 | 0 | 0 |
| FRAME 116 | scene19669 | 1 | 0 | 0 | 0 |
| FRAME 117 | scene19681 | 1 | 0 | 0 | 0 |
| FRAME 118 | scene20941 | 1 | 0 | 0 | 0 |
| FRAME 119 | scene20953 | 1 | 0 | 0 | 0 |
| FRAME 120 | scene20965 | 1 | 0 | 1 | 0 |
| FRAME 121 | scene20977 | 1 | 0 | 1 | 0 |
| FRAME 122 | scene22633 | 1 | 0 | 0 | 0 |
| FRAME 123 | scene22645 | 1 | 0 | 2 | 0 |
| FRAME 124 | scene22657 | 1 | 0 | 0 | 0 |
| FRAME 125 | scene22669 | 2 | 0 | 1 | 0 |
| FRAME 126 | scene22681 | 2 | 0 | 1 | 0 |
| FRAME 127 | scene22693 | 2 | 0 | 1 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  |  | 1 |  |  |
|  |  | Manul Counting |  | Algorithm Detected |  |
| FRAME | FRAME | \# OF | \#OF | \# OF | \#OF CYCLIST |
| NUMBER | CODE | PEDESTRIANS | CYCLIST | PEDESTRIANS |  |
| FRAME 128 | scene22705 | 2 | 0 | 1 | 0 |
| FRAME 129 | scene22717 | 2 | 0 | 0 | 0 |
| FRAME 130 | scene22729 | 2 | 0 | 0 | 0 |
| FRAME 131 | scene22741 | 2 | 0 | 0 | 0 |
| FRAME 132 | scene22753 | 2 | 0 | 0 | 0 |
| FRAME 133 | scene23209 | 1 | 0 | 0 | 0 |
| FRAME 134 | scene23221 | 1 | 0 | 0 | 0 |
| FRAME 135 | scene24949 | 2 | 0 | 1 | 0 |
| FRAME 136 | scene24961 | 2 | 0 | 1 | 0 |
| FRAME 137 | scene24973 | 2 | 0 | 0 | 0 |
| FRAME 138 | scene24985 | 2 | 0 | 1 | 0 |
| FRAME 139 | scene24997 | 2 | 0 | 0 | 0 |
| FRAME 140 | scene25009 | 2 | 0 | 0 | 0 |
| FRAME 141 | scene25957 | 1 | 0 | 1 | 0 |
| FRAME 142 | scene25969 | 1 | 0 | 0 | 0 |
| FRAME 143 | scene25981 | 1 | 0 | 0 | 0 |
| FRAME 144 | scene25993 | 1 | 0 | 0 | 0 |
| FRAME 145 | scene26005 | 1 | 0 | 2 | 0 |
| FRAME 146 | scene26017 | 1 | 0 | 0 | 0 |
| FRAME 147 | scene28129 | 1 | 0 | 0 | 0 |
| FRAME 148 | scene28141 | 1 | 0 | 0 | 0 |
| FRAME 149 | scene28153 | 1 | 0 | 0 | 0 |
| FRAME 150 | scene28165 | 1 | 0 | 0 | 0 |
| FRAME 151 | scene28177 | 1 | 0 | 0 | 0 |
| FRAME 152 | scene28981 | 1 | 0 | 1 | 0 |
| FRAME 153 | scene28993 | 1 | 0 | 1 | 0 |
| FRAME 154 | scene29005 | 1 | 0 | 1 | 0 |
| FRAME 155 | scene29017 | 1 | 0 | 1 | 0 |
| FRAME 156 | scene29029 | 1 | 0 | 1 | 0 |
| FRAME 157 | scene29041 | 1 | 0 | 1 | 0 |
| FRAME 158 | scene29977 | 1 | 0 | 0 | 0 |
| FRAME 159 | scene29989 | 1 | 0 | 0 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  | Manul Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# OF <br> PEDESTRIANS | \#OF <br> CYCLIST | \# OF PEDESTRIANS | \#OF CYCLIST |
|  |  |  |  |  |  |
| FRAME 160 | scene30001 | 1 | 0 | 0 | 0 |
| FRAME 161 | scene32089 | 1 | 0 | 0 | 0 |
| FRAME 162 | scene32101 | 1 | 0 | 0 | 0 |
| FRAME 163 | scene32113 | 1 | 0 | 0 | 0 |
| FRAME 164 | scene32125 | 1 | 0 | 1 | 0 |
| FRAME 165 | scene32137 | 1 | 0 | 0 | 0 |
| FRAME 166 | scene32149 | 1 | 0 | 1 | 0 |
| FRAME 167 | scene32305 | 1 | 0 | 0 | 0 |
| FRAME 168 | scene32317 | 1 | 0 | 0 | 0 |
| FRAME 169 | scene32773 | 1 | 0 | 1 | 0 |
| FRAME 170 | scene32785 | 1 | 0 | 0 | 0 |
| FRAME 171 | scene32797 | 1 | 0 | 0 | 0 |
| FRAME 172 | scene32809 | 1 | 0 | 0 | 0 |
| FRAME 173 | scene32821 | 1 | 0 | 0 | 0 |
| FRAME 174 | scene34225 | 1 | 0 | 0 | 0 |
| FRAME 175 | scene34237 | 1 | 0 | 0 | 0 |
| FRAME 176 | scene34249 | 1 | 0 | 0 | 0 |
| FRAME 177 | scene34261 | 1 | 0 | 0 | 0 |
| FRAME 178 | scene34273 | 1 | 0 | 0 | 0 |
| FRAME 179 | scene34285 | 1 | 0 | 0 | 0 |
| FRAME 180 | scene34297 | 1 | 0 | 0 | 0 |
| FRAME 181 | scene34309 | 1 | 0 | 0 | 0 |
| FRAME 182 | scene34321 | 1 | 0 | 0 | 0 |
| FRAME 183 | scene34333 | 1 | 0 | 0 | 0 |
| FRAME 184 | scene34345 | 1 | 0 | 1 | 0 |
| FRAME 185 | scene34357 | 1 | 0 | 1 | 0 |
| FRAME 186 | scene34369 | 1 | 0 | 1 | 0 |
| FRAME 187 | scene34381 | 1 | 0 | 0 | 0 |
| FRAME 188 | scene34393 | 1 | 0 | 0 | 0 |
| FRAME 189 | scene34813 | 1 | 0 | 0 | 0 |
| FRAME 190 | scene34825 | 1 | 0 | 0 | 0 |
| FRAME 191 | scene35041 | 0 | 1 | 0 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manul Counting |  | Algorithm Det |  |
| FRAME NUMBER | FRAME CODE | $\begin{aligned} & \text { \# OF } \\ & \text { PEDESTRIANS } \end{aligned}$ | $\begin{aligned} & \text { \#OF } \\ & \text { CYCLIST } \end{aligned}$ | \# OF <br> PEDESTRIANS | \#OF CYCLIST |
| FRAME 192 | scene35053 | 0 | 1 | 0 | 0 |
| FRAME 193 | scene35065 | 0 | 1 | 0 | 0 |
| FRAME 194 | scene35077 | 0 | 1 | 0 | 0 |
| FRAME 195 | scene35089 | 0 | 1 | 0 | 0 |
| FRAME 196 | scene35101 | 0 | 1 | 0 | 0 |
| FRAME 197 | scene36889 | 1 | 0 | 0 | 0 |
| FRAME 198 | scene36901 | 1 | 0 | 0 | 0 |
| FRAME 199 | scene36913 | 1 | 0 | 0 | 0 |
| FRAME 200 | scene36925 | 1 | 0 | 0 | 0 |
| FRAME 201 | scene36937 | 1 | 0 | 0 | 0 |
| FRAME 202 | scene36985 | 1 | 0 | 0 | 0 |
| FRAME 203 | scene36997 | 1 | 0 | 1 | 0 |
| FRAME 204 | scene37009 | 1 | 0 | 1 | 0 |
| FRAME 205 | scene38749 | 1 | 0 | 1 | 0 |
| FRAME 206 | scene38761 | 1 | 0 | 1 | 0 |
| FRAME 207 | scene38773 | 1 | 0 | 0 | 0 |
| FRAME 208 | scene38785 | 1 | 0 | 0 | 0 |
| FRAME 209 | scene40021 | 1 | 0 | 0 | 0 |
| FRAME 210 | scene40033 | 1 | 0 | 0 | 0 |
| FRAME 211 | scene 40045 | 1 | 0 | 0 | 0 |
| FRAME 212 | scene40057 | 1 | 0 | 0 | 0 |
| FRAME 213 | scene40393 | 1 | 0 | 1 | 0 |
| FRAME 214 | scene40405 | 1 | 0 | 1 | 0 |
| FRAME 215 | scene40417 | 1 | 0 | 1 | 0 |
| FRAME 216 | scene40429 | 1 | 0 | 0 | 0 |
| FRAME 217 | scene40441 | 1 | 0 | 0 | 0 |
| FRAME 218 | scene40945 | 1 | 0 | 1 | 0 |
| FRAME 219 | scene40957 | 1 | 0 | 1 | 0 |
| FRAME 220 | scene40969 | 1 | 0 | 1 | 0 |
| FRAME 221 | scene42733 | 1 | 0 | 0 | 0 |
| FRAME 222 | scene42745 | 1 | 0 | 0 | 0 |
| FRAME 223 | scene 42757 | 1 | 0 | 0 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  | Manul Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# OF <br> PEDESTRIANS | \#OF <br> CYCLIST | \# OF <br> PEDESTRIANS | \#OF CYCLIST |
| FRAME 224 | scene43273 | 1 | 0 | 0 | 0 |
| FRAME 225 | scene43285 | 1 | 0 | 0 | 0 |
| FRAME 226 | scene43297 | 1 | 0 | 0 | 0 |
| FRAME 227 | scene43309 | 1 | 0 | 0 | 0 |
| FRAME 228 | scene43321 | 1 | 0 | 0 | 0 |
| FRAME 229 | scene43897 | 1 | 0 | 0 | 0 |
| FRAME 230 | scene43909 | 1 | 0 | 0 | 0 |
| FRAME 231 | scene43921 | 1 | 0 | 1 | 0 |
| FRAME 232 | scene43933 | 1 | 0 | 1 | 0 |
| FRAME 233 | scene43945 | 1 | 0 | 1 | 0 |
| FRAME 234 | scene43957 | 1 | 0 | 0 | 0 |
| FRAME 235 | scene43969 | 1 | 0 | 1 | 0 |
| FRAME 236 | scene44017 | 1 | 0 | 1 | 0 |
| FRAME 237 | scene44029 | 1 | 0 | 1 | 0 |
| FRAME 238 | scene44041 | 1 | 0 | 1 | 0 |
| FRAME 239 | scene44053 | 1 | 0 | 0 | 0 |
| FRAME 240 | scene44569 | 1 | 0 | 1 | 0 |
| FRAME 241 | scene44581 | 1 | 0 | 0 | 0 |
| FRAME 242 | scene44881 | 1 | 0 | 0 | 0 |
| FRAME 243 | scene44893 | 1 | 0 | 0 | 0 |
| FRAME 244 | scene45709 | 2 | 0 | 1 | 0 |
| FRAME 245 | scene45721 | 2 | 0 | 1 | 0 |
| FRAME 246 | scene45733 | 2 | 0 | 0 | 0 |
| FRAME 247 | scene45745 | 2 | 0 | 1 | 0 |
| FRAME 248 | scene45997 | 2 | 0 | 0 | 0 |
| FRAME 249 | scene46009 | 1 | 0 | 0 | 0 |
| FRAME 250 | scene47041 | 5 | 0 | 2 | 0 |
| FRAME 251 | scene47053 | 5 | 0 | 3 | 0 |
| FRAME 252 | scene47209 | 8 | 0 | 1 | 0 |
| FRAME 253 | scene47221 | 8 | 0 | 2 | 0 |
| FRAME 254 | scene47233 | 7 | 0 | 3 | 0 |
| FRAME 255 | scene47245 | 7 | 0 | 1 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  | Manul Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME | FRAME | \# OF | \#OF | \# OF | \#OF CYCLIST |
| NUMBER | CODE | PEDESTRIANS | CYCLIST | PEDESTRIANS |  |
| FRAME 256 | scene47305 | 6 | 0 | 0 | 0 |
| FRAME 257 | scene47329 | 5 | 0 | 0 | 0 |
| FRAME 258 | scene47377 | 4 | 0 | 1 | 0 |
| FRAME 259 | scene47389 | 4 | 0 | 0 | 0 |
| FRAME 260 | scene47413 | 4 | 0 | 1 | 0 |
| FRAME 261 | scene47425 | 4 | 0 | 2 | 0 |
| FRAME 262 | scene47821 | 3 | 0 | 0 | 0 |
| FRAME 263 | scene47833 | 3 | 0 | 1 | 0 |
| FRAME 264 | scene47845 | 3 | 0 | 0 | 0 |
| FRAME 265 | scene47965 | 6 | 0 | 0 | 0 |
| FRAME 266 | scene48265 | 8 | 0 | 0 | 0 |
| FRAME 267 | scene48277 | 8 | 0 | 0 | 0 |
| FRAME 268 | scene48289 | 8 | 0 | 1 | 0 |
| FRAME 269 | scene48301 | 8 | 0 | 1 | 0 |
| FRAME 270 | scene48313 | 8 | 0 | 1 | 0 |
| FRAME 271 | scene49633 | 5 | 0 | 1 | 0 |
| FRAME 272 | scene49645 | 5 | 0 | 2 | 0 |
| FRAME 273 | scene50005 | 1 | 0 | 0 | 0 |
| FRAME 274 | scene50017 | 1 | 0 | 0 | 0 |
| FRAME 275 | scene50029 | 1 | 0 | 1 | 0 |
| FRAME 276 | sceme50785 | 2 | 0 | 1 | 0 |
| FRAME 277 | scene50797 | 2 | 0 | 0 | 0 |
| FRAME 278 | scene50809 | 2 | 0 | 0 | 0 |
| FRAME 279 | scene50821 | 2 | 0 | 0 | 0 |
| FRAME 280 | scene50905 | 2 | 0 | 0 | 0 |
| FRAME 281 | scene50917 | 2 | 0 | 0 | 0 |
| FRAME 282 | scene50929 | 2 | 0 | 0 | 0 |
| FRAME 283 | scene51217 | 1 | 0 | 1 | 0 |
| FRAME 284 | scene51229 | 1 | 0 | 1 | 0 |
| FRAME 285 | scene58093 | 2 | 0 | 0 | 0 |
| FRAME 286 | scene58105 | 2 | 0 | 0 | 0 |
| FRAME 287 | scene58117 | 2 | 0 | 0 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manul Counting |  | Algorithm Detected |  |
| FRAME | FRAME | \# OF | \#OF | \# OF | \#OF CYCLIST |
| NUMBER | CODE | PEDESTRIANS | CYCLIST | PEDESTRIANS |  |
| FRAME 288 | scene58429 | 1 | 0 | 1 | 0 |
| FRAME 289 | scene58441 | 1 | 0 | 1 | 0 |
| FRAME 290 | scene58453 | 1 | 0 | 1 | 0 |
| FRAME 291 | scene58489 | 1 | 0 | 1 | 0 |
| FRAME 292 | scene58501 | 1 | 0 | 0 | 0 |
| FRAME 293 | scene60481 | 2 | 0 | 0 | 0 |
| FRAME 294 | scene62893 | 1 | 0 | 0 | 0 |
| FRAME 295 | scene62905 | 1 | 0 | 0 | 0 |
| FRAME 296 | scene62917 | 1 | 0 | 0 | 0 |
| FRAME 297 | scene62929 | 1 | 0 | 0 | 0 |
| FRAME 298 | scene62941 | 1 | 0 | 0 | 0 |
| FRAME 299 | scene63769 | 1 | 0 | 0 | 0 |
| FRAME 300 | scene63781 | 1 | 0 | 1 | 0 |
| FRAME 301 | scene63793 | 1 | 0 | 1 | 0 |
| FRAME 302 | scene63805 | 1 | 0 | 1 | 0 |
| FRAME 303 | scene63817 | 1 | 0 | 1 | 0 |
| FRAME 304 | scene63925 | 2 | 0 | 1 | 0 |
| FRAME 305 | scene63937 | 2 | 0 | 1 | 0 |
| FRAME 306 | scene63949 | 2 | 0 | 0 | 0 |
| FRAME 307 | scene63961 | 2 | 0 | 0 | 0 |
| FRAME 308 | scene63973 | 2 | 0 | 0 | 0 |
| FRAME 309 | scene64741 | 1 | 0 | 0 | 0 |
| FRAME 310 | scene64753 | 1 | 0 | 1 | 0 |
| FRAME 311 | scene64765 | 1 | 0 | 1 | 0 |
| FRAME 312 | scene64777 | 1 | 0 | 1 | 0 |
| FRAME 313 | scene65209 | 1 | 0 | 0 | 0 |
| FRAME 314 | scene65233 | 1 | 0 | 0 | 0 |
| FRAME 315 | scene72529 | 1 | 0 | 0 | 0 |
| FRAME 316 | scene72541 | 1 | 0 | 1 | 0 |
| FRAME 317 | scene72553 | 1 | 0 | 1 | 0 |
| FRAME 318 | scene72997 | 1 | 0 | 0 | 0 |
| FRAME 319 | scene73009 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manul Counting |  | Algorithm Det |  |
| FRAME NUMBER | FRAME CODE | $\begin{aligned} & \text { \# OF } \\ & \text { PEDESTRIANS } \end{aligned}$ | \#OF <br> CYCLIST | \# OF <br> PEDESTRIANS | \#OF CYCLIST |
| FRAME 320 | scene 73201 | , | 0 | 0 | 0 |
| FRAME 321 | scene 73225 | 1 | 0 | 1 | 0 |
| FRAME 322 | scene 73237 | 1 | 0 | 1 | 0 |
| FRAME 323 | scene 73249 | 1 | 0 | 1 | 0 |
| FRAME 324 | scene75193 | 1 | 0 | 1 | 0 |
| FRAME 325 | scene75205 | 1 | 0 | 0 | 0 |
| FRAME 326 | scene75217 | 1 | 0 | 1 | 0 |
| FRAME 327 | scene75229 | 1 | 0 | 1 | 0 |
| FRAME 328 | scene75241 | 1 | 0 | 1 | 0 |
| FRAME 329 | scene76141 | 2 | 0 | 0 | 0 |
| FRAME 330 | scene76153 | 2 | 0 | 0 | 0 |
| FRAME 331 | scene76165 | 2 | 0 | 1 | 0 |
| FRAME 332 | scene76177 | 2 | 0 | 2 | 0 |
| FRAME 333 | scene76189 | 2 | 0 | 2 | 0 |
| FRAME 334 | scene77773 | 1 | 0 | 0 | 0 |
| FRAME 335 | scene77785 | 1 | 0 | 1 | 0 |
| FRAME 336 | scene 77797 | 1 | 0 | 1 | 0 |
| FRAME 337 | scene 77809 | 1 | 0 | 1 | 0 |
| FRAME 338 | scene83737 | 2 | 0 | 1 | 0 |
| FRAME 339 | scene83749 | 2 | 0 | 0 | 0 |
| FRAME 340 | scene83761 | 2 | 0 | 1 | 0 |
| FRAME 341 | scene83773 | 2 | 0 | 0 | 0 |
| FRAME 342 | scene83785 | 2 | 0 | 2 | 0 |
| FRAME 343 | scene85789 | 2 | 0 | 0 | 0 |
| FRAME 344 | scene85801 | 2 | 0 | 0 | 0 |
| FRAME 345 | scene85813 | 2 | 0 | 0 | 0 |
| FRAME 346 | scene85825 | 2 | 0 | 0 | 0 |
| FRAME 347 | scene85837 | 2 | 0 | 0 | 0 |
| FRAME 348 | scene85873 | 2 | 0 | 1 | 0 |
| FRAME 349 | scene89017 | 1 | 0 | 1 | 0 |
| FRAME 350 | scene89029 | 1 | 0 | 1 | 0 |
| FRAME 351 | scene89041 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 3 (CEBA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 203 (1) |  |  |  |  |  |
| DATE AND TIME: Monday, October 23, 2017, 7:42:18 PM |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 365 |  |  |  |  |  |
|  |  | Manul Counting |  |  |  |
|  |  |  |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# OF <br> PEDESTRIANS | $\begin{aligned} & \hline \text { \#OF } \\ & \text { CYCLIST } \end{aligned}$ | \# OF <br> PEDESTRIANS | \#OF CYCLIST |
| FRAME 352 | scene89053 | 1 | 0 | 1 | 0 |
| FRAME 353 | scene89317 | 2 | 0 | 1 | 0 |
| FRAME 354 | scene89329 | 2 | 0 | 1 | 0 |
| FRAME 355 | scene89341 | 2 | 0 | 1 | 0 |
| FRAME 356 | scene89449 | 1 | 0 | 1 | 0 |
| FRAME 357 | scene89461 | 1 | 0 | 1 | 0 |
| FRAME 358 | scene89485 | 1 | 0 | 1 | 0 |
| FRAME 359 | scene89509 | 1 | 0 | 1 | 0 |
| FRAME 360 | scene89821 | 1 | 0 | 0 | 0 |
| FRAME 361 | scene89833 | 1 | 0 | 0 | 0 |
| FRAME 362 | scene89845 | 1 | 0 | 0 | 0 |
| FRAME 363 | scene89857 | 1 | 0 | 0 | 0 |
| FRAME 364 | scene89869 | 1 | 0 | 0 | 0 |
| FRAME 365 | scene89881 | 1 | 0 | 0 | 0 |

LOCATION: SITE 4 (NICHOLSON)

| FOLDER NUMBER: 820-5pm |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME <br> NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclist |
| FRAME 1 | scene00085 | 1 | 0 | 1 | 0 |
| FRAME 2 | scene00097 | 1 | 0 | 0 | 0 |
| FRAME 3 | scene00193 | 4 | 0 | 4 | 0 |
| FRAME 4 | scene00229 | 1 | 0 | 1 | 0 |
| FRAME 5 | scene00445 | 1 | 0 | 0 | 0 |
| FRAME 6 | scene00457 | 1 | 0 | 0 | 0 |
| FRAME 7 | scene00469 | 1 | 0 | 0 | 0 |
| FRAME 8 | scene00925 | 1 | 0 | 1 | 0 |
| FRAME 9 | scene00937 | 1 | 0 | 1 | 0 |
| FRAME 10 | scene00949 | 1 | 0 | 1 | 0 |
| FRAME 11 | scene00961 | 1 | 0 | 1 | 0 |
| FRAME 12 | scene00973 | 1 | 0 | 0 | 0 |
| FRAME 13 | scene01021 | 1 | 0 | 1 | 0 |
| FRAME 14 | scene01033 | 1 | 0 | 1 | 0 |
| FRAME 15 | scene01045 | 1 | 0 | 1 | 0 |
| FRAME 16 | scene01057 | 1 | 0 | 1 | 0 |
| FRAME 17 | scene01201 | 2 | 0 | 1 | 0 |
| FRAME 18 | scene01213 | 2 | 0 | 3 | 0 |
| FRAME 19 | scene01225 | 2 | 0 | 2 | 0 |
| FRAME 20 | scene01237 | 2 | 0 | 3 | 0 |
| FRAME 21 | scene01249 | 1 | 0 | 1 | 0 |
| FRAME 22 | scene01261 | 1 | 0 | 1 | 0 |
| FRAME 23 | scene01273 | 1 | 0 | 1 | 0 |
| FRAME 24 | scene01285 | 1 | 0 | 1 | 0 |
| FRAME 25 | scene01297 | 1 | 0 | 1 | 0 |
| FRAME 26 | scene01309 | 1 | 0 | 1 | 0 |
| FRAME 27 | scene01321 | 1 | 0 | 1 | 0 |
| FRAME 28 | scene01333 | 1 | 0 | 0 | 0 |
| FRAME 29 | scene03637 | 1 | 0 | 0 | 0 |
| FRAME 30 | scene03649 | 1 | 0 | 1 | 0 |
| FRAME 31 | scene03661 | 1 | 0 | 0 | 0 |


| LOCATION: SITE 4 (NICHOLSON) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 820-5pm |  |  |  |  |  |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 32 | scene03673 | 2 | 0 | 2 | 0 |
| FRAME 33 | scene03685 | 1 | 0 | 1 | 0 |
| FRAME 34 | scene03697 | 1 | 0 | 1 | 0 |
| FRAME 35 | scene03709 | 1 | 0 | 0 | 0 |
| FRAME 36 | scene03721 | 1 | 0 | 0 | 0 |
| FRAME 37 | scene03745 | 2 | 0 | 1 | 0 |
| FRAME 38 | scene03757 | 2 | 0 | 0 | 0 |
| FRAME 39 | scene03769 | 2 | 0 | 0 | 0 |
| FRAME 40 | scene03817 | 2 | 0 | 1 | 0 |
| FRAME 41 | scene03829 | 2 | 0 | 1 | 0 |
| FRAME 42 | scene03841 | 2 | 0 | 0 | 0 |
| FRAME 43 | scene03853 | 2 | 0 | 1 | 0 |
| FRAME 44 | scene03865 | 2 | 0 | 0 | 0 |
| FRAME 45 | scene03877 | 2 | 0 | 2 | 0 |
| FRAME 46 | scene03901 | 2 | 0 | 2 | 0 |
| FRAME 47 | scene03913 | 2 | 0 | 4 | 0 |
| FRAME 48 | scene03925 | 2 | 0 | 3 | 0 |
| FRAME 49 | scene03937 | 2 | 0 | 3 | 0 |
| FRAME 50 | scene03985 | 2 | 0 | 2 | 0 |
| FRAME 51 | scene03997 | 2 | 0 | 3 | 0 |
| FRAME 52 | scene04009 | 2 | 0 | 2 | 0 |
| FRAME 53 | scene04021 | 2 | 0 | 1 | 0 |
| FRAME 54 | scene04033 | 2 | 0 | 1 | 0 |
| FRAME 55 | scene04045 | 1 | 0 | 1 | 0 |
| FRAME 56 | scene04057 | 1 | 0 | 1 | 0 |
| FRAME 57 | scene04069 | 1 | 0 | 1 | 0 |
| FRAME 58 | scene04081 | 1 | 0 | 1 | 0 |
| FRAME 59 | scene04093 | 1 | 0 | 1 | 0 |
| FRAME 60 | scene04105 | 1 | 0 | 1 | 0 |
| FRAME 61 | scene04225 | 1 | 0 | 1 | 0 |
| FRAME 62 | scene04237 | 1 | 0 | 2 | 0 |
| FRAME 63 | scene04249 | 1 | 0 | 1 | 0 |
| FRAME 64 | scene04261 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 4 (NICHOLSON) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: $820-5 \mathrm{pm}$ |  |  |  |  |  |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 65 | scene04273 | 1 | 0 | 1 | 0 |
| FRAME 66 | scene04285 | 1 | 0 | 1 | 0 |
| FRAME 67 | scene04297 | 1 | 0 | 1 | 0 |
| FRAME 68 | scene04309 | 1 | 0 | 1 | 0 |
| FRAME 69 | scene04321 | 1 | 0 | 1 | 0 |
| FRAME 70 | scene04333 | 1 | 0 | 2 | 0 |
| FRAME 71 | scene04345 | 1 | 0 | 2 | 0 |
| FRAME 72 | scene04357 | 1 | 0 | 1 | 0 |
| FRAME 73 | scene04369 | 1 | 0 | 2 | 0 |
| FRAME 74 | scene04381 | 1 | 0 | 1 | 0 |
| FRAME 75 | scene04393 | 1 | 0 | 1 | 0 |
| FRAME 76 | scene04429 | 1 | 0 | 1 | 0 |
| FRAME 77 | scene04441 | 1 | 0 | 1 | 0 |
| FRAME 78 | scene05161 | 1 | 0 | 0 | 0 |
| FRAME 79 | scene05173 | 2 | 0 | 0 | 0 |
| FRAME 80 | scene05209 | 2 | 0 | 1 | 0 |
| FRAME 81 | scene05221 | 2 | 0 | 1 | 0 |
| FRAME 82 | scene05233 | 2 | 0 | 2 | 0 |
| FRAME 83 | scene05245 | 2 | 0 | 2 | 0 |
| FRAME 84 | scene05257 | 3 | 0 | 3 | 0 |
| FRAME 85 | scene05269 | 2 | 0 | 2 | 0 |
| FRAME 86 | scene05533 | 2 | 0 | 0 | 0 |
| FRAME 87 | scene05545 | 2 | 0 | 0 | 0 |
| FRAME 88 | scene05557 | 2 | 0 | 0 | 0 |
| FRAME 89 | scene05569 | 2 | 0 | 2 | 0 |
| FRAME 90 | scene05581 | 2 | 0 | 1 | 0 |
| FRAME 91 | scene05593 | 2 | 0 | 1 | 0 |
| FRAME 92 | scene07585 | 1 | 0 | 0 | 0 |
| FRAME 93 | scene07597 | 1 | 0 | 0 | 0 |
| FRAME 94 | scene07609 | 1 | 0 | 2 | 0 |
| FRAME 95 | scene07621 | 1 | 0 | 1 | 0 |
| FRAME 96 | scene07657 | 1 | 0 | 2 | 0 |
| FRAME 97 | scene07669 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 4 (NICHOLSON) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: $820-5 \mathrm{pm}$ |  |  |  |  |  |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 98 | scene07681 | 1 | 0 | 1 | 0 |
| FRAME 99 | scene07693 | 1 | 0 | 1 | 0 |
| FRAME 100 | scene07705 | 1 | 0 | 0 | 0 |
| FRAME 101 | scene07717 | 1 | 0 | 0 | 0 |
| FRAME 102 | scene07729 | 1 | 0 | 0 | 0 |
| FRAME 103 | scene07741 | 1 | 0 | 1 | 0 |
| FRAME 104 | scene08017 | 1 | 0 | 1 | 0 |
| FRAME 105 | scene08029 | 1 | 0 | 1 | 0 |
| FRAME 106 | scene08041 | 1 | 0 | 1 | 0 |
| FRAME 107 | scene08053 | 1 | 0 | 2 | 0 |
| FRAME 108 | scene08065 | 1 | 0 | 1 | 0 |
| FRAME 109 | scene08833 | 1 | 0 | 2 | 0 |
| FRAME 110 | scene08845 | 1 | 0 | 2 | 0 |
| FRAME 111 | scene08857 | 1 | 0 | 2 | 0 |
| FRAME 112 | scene08869 | 1 | 0 | 2 | 0 |
| FRAME 113 | scene08881 | 1 | 0 | 2 | 0 |
| FRAME 114 | scene08893 | 2 | 0 | 2 | 0 |
| FRAME 115 | scene08905 | 2 | 0 | 2 | 0 |
| FRAME 116 | scene08917 | 2 | 0 | 3 | 0 |
| FRAME 117 | scene08929 | 1 | 0 | 0 | 0 |
| FRAME 118 | scene09133 | 1 | 0 | 0 | 0 |
| FRAME 119 | scene09145 | 1 | 0 | 1 | 0 |
| FRAME 120 | scene09157 | 1 | 0 | 1 | 0 |
| FRAME 121 | scene09169 | 2 | 0 | 1 | 0 |
| FRAME 122 | scene10033 | 1 | 0 | 1 | 0 |
| FRAME 123 | scene10045 | 1 | 0 | 3 | 0 |
| FRAME 124 | scene10057 | 1 | 0 | 1 | 0 |
| FRAME 125 | scene10069 | 1 | 0 | 1 | 0 |
| FRAME 126 | scene10081 | 1 | 0 | 3 | 0 |
| FRAME 127 | scene10093 | 1 | 0 | 2 | 0 |
| FRAME 128 | scene10105 | 1 | 0 | 2 | 0 |
| FRAME 129 | scene10117 | 1 | 0 | 1 | 0 |
| FRAME 130 | scene10129 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 4 (NICHOLSON) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: $820-5 \mathrm{pm}$ |  |  |  |  |  |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
|  |  |  |  |  |  |
| FRAME NUMBER | FRAME CODE | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 131 | scene10141 | 1 | 0 | 2 | 0 |
| FRAME 132 | scene10153 | 1 | 0 | 0 | 0 |
| FRAME 133 | scene10321 | 1 | 0 | 3 | 0 |
| FRAME 134 | scene10333 | 1 | 0 | 2 | 0 |
| FRAME 135 | scene10345 | 2 | 0 | 2 | 0 |
| FRAME 136 | scene10357 | 2 | 0 | 2 | 0 |
| FRAME 137 | scene10369 | 2 | 0 | 2 | 0 |
| FRAME 138 | scene10381 | 2 | 0 | 2 | 0 |
| FRAME 139 | scene10393 | 2 | 0 | 1 | 0 |
| FRAME 140 | scene10405 | 2 | 0 | 1 | 0 |
| FRAME 141 | scene10417 | 2 | 0 | 2 | 0 |
| FRAME 142 | scene10429 | 2 | 0 | 3 | 0 |
| FRAME 143 | scene10441 | 2 | 0 | 2 | 0 |
| FRAME 144 | scene10573 | 1 | 0 | 0 | 0 |
| FRAME 145 | scene12973 | 1 | 0 | 2 | 0 |
| FRAME 146 | scene12985 | 1 | 0 | 1 | 0 |
| FRAME 147 | scene12997 | 1 | 0 | 1 | 0 |
| FRAME 148 | scene13009 | 1 | 0 | 1 | 0 |
| FRAME 149 | scene13021 | 1 | 0 | 1 | 0 |
| FRAME 150 | scene13033 | 1 | 0 | 1 | 0 |
| FRAME 151 | scene13045 | 1 | 0 | 1 | 0 |
| FRAME 152 | scene13057 | 1 | 0 | 2 | 0 |
| FRAME 153 | scene13069 | 1 | 0 | 2 | 0 |
| FRAME 154 | scene13081 | 1 | 0 | 2 | 0 |
| FRAME 155 | scene13093 | 1 | 0 | 2 | 0 |
| FRAME 156 | scene13561 | 1 | 0 | 1 | 0 |
| FRAME 157 | scene13573 | 1 | 0 | 2 | 0 |
| FRAME 158 | scene13585 | 1 | 0 | 2 | 0 |
| FRAME 159 | scene13597 | 1 | 0 | 1 | 0 |
| FRAME 160 | scene19573 | 1 | 0 | 2 | 0 |
| FRAME 161 | scene19597 | 1 | 0 | 1 | 0 |
| FRAME 162 | scene19609 | 1 | 0 | 1 | 0 |
| FRAME 163 | scene19621 | 1 | 0 | 2 | 0 |


| LOCATION: SITE 4 (NICHOLSON) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: $820-5 \mathrm{pm}$ |  |  |  |  |  |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  | - ${ }^{\text {M }}$ |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | $\begin{aligned} & \text { \# of } \\ & \text { pedestrians } \end{aligned}$ | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 164 | scene19633 | 1 | 0 | 2 | 0 |
| FRAME 165 | scene19645 | 1 | 0 | 1 | 0 |
| FRAME 166 | scene20029 | 1 | 0 | 1 | 0 |
| FRAME 167 | scene20041 | 1 | 0 | 1 | 0 |
| FRAME 168 | scene20053 | 1 | 0 | 1 | 0 |
| FRAME 169 | scene20065 | 1 | 0 | 1 | 0 |
| FRAME 170 | scene20077 | 1 | 0 | 1 | 0 |
| FRAME 171 | scene20089 | 1 | 0 | 1 | 0 |
| FRAME 172 | scene20101 | 1 | 0 | 1 | 0 |
| FRAME 173 | scene20113 | 1 | 0 | 1 | 0 |
| FRAME 174 | scene20173 | 2 | 0 | 1 | 0 |
| FRAME 175 | scene20185 | 2 | 0 | 0 | 0 |
| FRAME 176 | scene20197 | 2 | 0 | 1 | 0 |
| FRAME 177 | scene20221 | 3 | 0 | 0 | 0 |
| FRAME 178 | scene20341 | 3 | 0 | 2 | 0 |
| FRAME 179 | scene20353 | 2 | 0 | 0 | 0 |
| FRAME 180 | scene20365 | 1 | 0 | 0 | 0 |
| FRAME 181 | scene21481 | 1 | 0 | 2 | 0 |
| FRAME 182 | scene21493 | 1 | 0 | 0 | 0 |
| FRAME 183 | scene21505 | 1 | 0 | 1 | 0 |
| FRAME 184 | scene21517 | 1 | 0 | 1 | 0 |
| FRAME 185 | scene21649 | 1 | 0 | 2 | 0 |
| FRAME 186 | scene21661 | 1 | 0 | 1 | 0 |
| FRAME 187 | scene21673 | 1 | 0 | 1 | 0 |
| FRAME 188 | scene21685 | 1 | 0 | 1 | 0 |
| FRAME 189 | scene21697 | 1 | 0 | 1 | 0 |
| FRAME 190 | scene21709 | 1 | 0 | 1 | 0 |
| FRAME 191 | scene21721 | 1 | 0 | 2 | 0 |
| FRAME 192 | scene22057 | 2 | 0 | 1 | 0 |
| FRAME 193 | scene22069 | 2 | 0 | 1 | 0 |
| FRAME 194 | scene22081 | 2 | 0 | 1 | 0 |
| FRAME 195 | scene22093 | 2 | 0 | 1 | 0 |
| FRAME 196 | scene22105 | 2 | 0 | 2 | 0 |


| LOCATION: SITE 4 (NICHOLSON) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| FOLDER NUMBER: 820-5pm |  |  |  |  |  |
| DATE AND TIME: Tuesday, November 21, 2017, 4:41:30pm |  |  |  |  |  |
| WEATHER: No Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 221 |  |  |  |  |  |
|  |  |  | 1 |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | $\begin{aligned} & \text { FRAME } \\ & \text { CODE } \end{aligned}$ | \# of pedestrians | \# of cyclists | \# of pedestrians | \# of cyclists |
| FRAME 197 | scene22117 | 1 | 0 | 1 | 0 |
| FRAME 198 | scene22129 | 1 | 0 | 1 | 0 |
| FRAME 199 | scene23725 | 2 | 0 | 3 | 0 |
| FRAME 200 | scene23737 | 2 | 0 | 3 | 0 |
| FRAME 201 | scene23749 | 2 | 0 | 3 | 0 |
| FRAME 202 | scene23761 | 2 | 0 | 3 | 0 |
| FRAME 203 | scene23773 | 2 | 0 | 1 | 0 |
| FRAME 204 | scene23785 | 2 | 0 | 2 | 0 |
| FRAME 205 | scene23797 | 2 | 0 | 1 | 0 |
| FRAME 206 | scene23809 | 1 | 0 | 1 | 0 |
| FRAME 207 | scene24841 | 2 | 0 | 1 | 0 |
| FRAME 208 | scene24853 | 2 | 0 | 1 | 0 |
| FRAME 209 | scene24865 | 2 | 0 | 1 | 0 |
| FRAME 210 | scene24877 | 2 | 0 | 2 | 0 |
| FRAME 211 | scene24889 | 2 | 0 | 1 | 0 |
| FRAME 212 | scene24901 | 2 | 0 | 1 | 0 |
| FRAME 213 | scene24973 | 2 | 0 | 2 | 0 |
| FRAME 214 | scene24985 | 2 | 0 | 2 | 0 |
| FRAME 215 | scene24997 | 2 | 0 | 0 | 0 |
| FRAME 216 | scene25009 | 2 | 0 | 1 | 0 |
| FRAME 217 | scene25021 | 2 | 0 | 1 | 0 |
| FRAME 218 | scene25585 | 1 | 0 | 1 | 0 |
| FRAME 219 | scene 25597 | 1 | 0 | 2 | 0 |
| FRAME 220 | scene25609 | 1 | 0 | 1 | 0 |
| FRAME 221 | scene25621 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -1 | - |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of Pedestrians | \# of Cyclists |
| FRAME 1 | scene 00001 | 1 | 0 | 1 | 0 |
| FRAME 2 | scene00013 | 1 | 0 | 1 | 0 |
| FRAME 3 | scene00025 | 1 | 0 | 1 | 0 |
| FRAME 4 | scene00037 | 1 | 0 | 1 | 0 |
| FRAME 5 | scene00049 | 1 | 0 | 1 | 0 |
| FRAME 6 | scene00061 | 1 | 0 | 1 | 0 |
| FRAME 7 | scene00073 | 1 | 0 | 1 | 0 |
| FRAME 8 | scene00085 | 1 | 0 | 1 | 0 |
| FRAME 9 | scene00241 | 2 | 0 | 2 | 0 |
| FRAME 10 | scene00253 | 2 | 0 | 2 | 0 |
| FRAME 11 | scene00265 | 2 | 0 | 2 | 0 |
| FRAME 12 | scene00277 | 2 | 0 | 1 | 0 |
| FRAME 13 | scene00301 | 2 | 0 | 1 | 0 |
| FRAME 14 | scene00337 | 2 | 0 | 1 | 0 |
| FRAME 15 | scene01525 | 3 | 0 | 0 | 0 |
| FRAME 16 | scene01537 | 3 | 0 | 1 | 0 |
| FRAME 17 | scene01609 | 3 | 0 | 1 | 0 |
| FRAME 18 | scene01621 | 3 | 0 | 1 | 0 |
| FRAME 19 | scene01633 | 3 | 0 | 0 | 0 |
| FRAME 20 | scene01933 | 1 | 0 | 1 | 0 |
| FRAME 21 | scene01945 | 1 | 0 | 1 | 0 |
| FRAME 22 | scene01957 | 1 | 0 | 1 | 0 |
| FRAME 23 | scene01969 | 1 | 0 | 1 | 0 |
| FRAME 24 | scene02125 | 2 | 0 | 2 | 0 |
| FRAME 25 | scene02137 | 2 | 0 | 1 | 0 |
| FRAME 26 | scene02149 | 2 | 0 | 1 | 0 |
| FRAME 27 | scene02173 | 3 | 0 | 1 | 0 |
| FRAME 28 | scene02185 | 3 | 0 | 2 | 0 |
| FRAME 29 | scene02197 | 3 | 0 | 2 | 0 |
| FRAME 30 | scene02245 | 3 | 0 | 0 | 0 |
| FRAME 31 | scene02257 | 3 | 0 | 1 | 0 |
| FRAME 32 | scene02269 | 1 | 0 | 2 | 0 |
| FRAME 33 | scene02569 | 1 | 0 | 1 | 0 |
| FRAME 34 | scene02581 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of Pedestrians | \# of Cyclists |
| FRAME 35 | scene02593 | 1 | 0 | 1 | 0 |
| FRAME 36 | scene02605 | 1 | 0 | 1 | 0 |
| FRAME 37 | scene02617 | 1 | 0 | 1 | 0 |
| FRAME 38 | scene08653 | 1 | 0 | 1 | 0 |
| FRAME 39 | scene08665 | 1 | 0 | 1 | 0 |
| FRAME 40 | scene08677 | 1 | 0 | 1 | 0 |
| FRAME 41 | scene08713 | 2 | 0 | 2 | 0 |
| FRAME 42 | scene08725 | 2 | 0 | 1 | 0 |
| FRAME 43 | scene09025 | 3 | 0 | 2 | 0 |
| FRAME 44 | scene09037 | 3 | 0 | 2 | 0 |
| FRAME 45 | scene09049 | 3 | 0 | 2 | 0 |
| FRAME 46 | scene09073 | 3 | 0 | 1 | 0 |
| FRAME 47 | scene09085 | 3 | 0 | 2 | 0 |
| FRAME 48 | scene09097 | 2 | 0 | 1 | 0 |
| FRAME 49 | scene09109 | 2 | 0 | 1 | 0 |
| FRAME 50 | scene10357 | 1 | 0 | 1 | 0 |
| FRAME 51 | scene10369 | 1 | 0 | 1 | 0 |
| FRAME 52 | scene10381 | 1 | 0 | 1 | 0 |
| FRAME 53 | scene10393 | 1 | 0 | 1 | 0 |
| FRAME 54 | scene10405 | 1 | 0 | 1 | 0 |
| FRAME 55 | scene10513 | 1 | 0 | 1 | 0 |
| FRAME 56 | scene13141 | 1 | 0 | 0 | 0 |
| FRAME 57 | scene13153 | 1 | 0 | 1 | 0 |
| FRAME 58 | scene13165 | 1 | 0 | 1 | 0 |
| FRAME 59 | scene13177 | 1 | 0 | 1 | 0 |
| FRAME 60 | scene13981 | 1 | 0 | 1 | 0 |
| FRAME 61 | scene13993 | 1 | 0 | 1 | 0 |
| FRAME 62 | scene14005 | 1 | 0 | 1 | 0 |
| FRAME 63 | scene15553 | 1 | 0 | 1 | 0 |
| FRAME 64 | scene15565 | 1 | 0 | 1 | 0 |
| FRAME 65 | scene15577 | 1 | 0 | 1 | 0 |
| FRAME 66 | scene15589 | 1 | 0 | 1 | 0 |
| FRAME 67 | scene17185 | 1 | 0 | 1 | 0 |
| FRAME 68 | scene17197 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | , | - |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of Pedestrians | \# of Cyclists |
| FRAME 69 | scene17233 | 1 | 0 | 1 | 0 |
| FRAME 70 | scene17245 | 1 | 0 | 0 | 0 |
| FRAME 71 | scene18037 | 2 | 0 | 2 | 0 |
| FRAME 72 | scene18049 | 2 | 0 | 2 | 0 |
| FRAME 73 | scene18061 | 2 | 0 | 2 | 0 |
| FRAME 74 | scene19621 | 1 | 0 | 1 | 0 |
| FRAME 75 | scene19633 | 1 | 0 | 1 | 0 |
| FRAME 76 | scene19645 | 1 | 0 | 1 | 0 |
| FRAME 77 | scene19933 | 1 | 0 | 1 | 0 |
| FRAME 78 | scene19645 | 1 | 0 | 1 | 0 |
| FRAME 79 | scene19957 | 1 | 0 | 1 | 0 |
| FRAME 80 | scene19993 | 3 | 0 | 3 | 0 |
| FRAME 81 | scene20017 | 3 | 0 | 3 | 0 |
| FRAME 82 | scene20029 | 3 | 0 | 3 | 0 |
| FRAME 83 | scene20173 | 5 | 0 | 3 | 0 |
| FRAME 84 | scene20185 | 5 | 0 | 4 | 0 |
| FRAME 85 | scene20977 | 3 | 0 | 1 | 0 |
| FRAME 86 | scene20989 | 3 | 0 | 1 | 0 |
| FRAME 87 | scene21001 | 3 | 0 | 2 | 0 |
| FRAME 88 | scene21025 | 3 | 0 | 2 | 0 |
| FRAME 89 | scene21205 | 3 | 0 | 2 | 0 |
| FRAME 90 | scene21217 | 3 | 0 | 3 | 0 |
| FRAME 91 | scene21229 | 3 | 0 | 1 | 0 |
| FRAME 92 | scene21253 | 2 | 0 | 2 | 0 |
| FRAME 93 | scene21265 | 2 | 0 | 1 | 0 |
| FRAME 94 | scene22093 | 1 | 0 | 1 | 0 |
| FRAME 95 | scene22105 | 1 | 0 | 1 | 0 |
| FRAME 96 | scene22117 | 1 | 0 | 1 | 0 |
| FRAME 97 | scene22909 | 1 | 0 | 1 | 0 |
| FRAME 98 | scene22921 | 2 | 0 | 1 | 0 |
| FRAME 99 | scene22933 | 2 | 0 | 2 | 0 |
| FRAME 100 | scene23185 | 2 | 0 | 2 | 0 |
| FRAME 101 | scene23197 | 2 | 0 | 1 | 0 |
| FRAME 102 | scene23209 | 2 | 0 | 1 | 0 |



| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | , | I |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of Pedestrians | \# of Cyclists |
| FRAME 137 | scene29629 | 2 | 1 | 0 | 0 |
| FRAME 138 | scene29641 | 3 | 1 | 2 | 0 |
| FRAME 139 | scene30421 | 1 | 0 | 1 | 0 |
| FRAME 140 | scene30433 | 1 | 0 | 1 | 0 |
| FRAME 141 | scene30445 | 1 | 0 | 1 | 0 |
| FRAME 142 | scene30457 | 1 | 0 | 2 | 0 |
| FRAME 143 | scene30469 | 1 | 0 | 0 | 0 |
| FRAME 144 | scene31285 | 1 | 0 | 0 | 0 |
| FRAME 145 | scene31297 | 1 | 0 | 1 | 0 |
| FRAME 146 | scene31309 | 1 | 0 | 1 | 0 |
| FRAME 147 | scene31321 | 1 | 0 | 1 | 0 |
| FRAME 148 | scene31369 | 2 | 0 | 2 | 0 |
| FRAME 149 | scene31381 | 2 | 0 | 2 | 0 |
| FRAME 150 | scene31393 | 2 | 0 | 1 | 0 |
| FRAME 151 | scene31825 | 5 | 0 | 3 | 0 |
| FRAME 152 | scene31837 | 5 | 0 | 4 | 0 |
| FRAME 153 | scene31849 | 5 | 0 | 4 | 0 |
| FRAME 154 | scene31885 | 5 | 0 | 1 | 0 |
| FRAME 155 | scene31897 | 4 | 0 | 2 | 0 |
| FRAME 156 | scene32305 | 2 | 0 | 1 | 0 |
| FRAME 157 | scene32317 | 2 | 0 | 2 | 0 |
| FRAME 158 | scene32329 | 2 | 0 | 1 | 0 |
| FRAME 159 | scene32653 | 1 | 0 | 1 | 0 |
| FRAME 160 | scene32665 | 1 | 0 | 1 | 0 |
| FRAME 161 | scene32677 | 1 | 0 | 1 | 0 |
| FRAME 162 | scene32689 | 1 | 0 | 1 | 0 |
| FRAME 163 | scene 32701 | 1 | 0 | 1 | 0 |
| FRAME 164 | scene 32713 | 1 | 0 | 0 | 0 |
| FRAME 165 | scene33697 | 1 | 0 | 1 | 0 |
| FRAME 166 | scene33709 | 2 | 0 | 2 | 0 |
| FRAME 167 | scene33721 | 2 | 0 | 2 | 0 |
| FRAME 168 | scene33733 | 2 | 0 | 2 | 0 |
| FRAME 169 | scene34093 | 4 | 0 | 1 | 0 |
| FRAME 170 | scene34105 | 4 | 0 | 1 | 0 |


| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ) | 1 |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Cou |  | Algorithm D |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of <br> Pedestrians | \# of Cyclists |
| FRAME 171 | scene34165 | 4 | 0 | 2 | 0 |
| FRAME 172 | scene34177 | 4 | 0 | 3 | 0 |
| FRAME 173 | scene34189 | 4 | 0 | 4 | 0 |
| FRAME 174 | scene34201 | 4 | 0 | 4 | 0 |
| FRAME 175 | scene34225 | 5 | 0 | 5 | 0 |
| FRAME 176 | scene34237 | 5 | 0 | 5 | 0 |
| FRAME 177 | scene35533 | 1 | 0 | 1 | 0 |
| FRAME 178 | scene35545 | 1 | 0 | 0 | 0 |
| FRAME 179 | scene35569 | 1 | 0 | 1 | 0 |
| FRAME 180 | scene35581 | 1 | 0 | 1 | 0 |
| FRAME 181 | scene37825 | 1 | 0 | 1 | 0 |
| FRAME 182 | scene37837 | 1 | 0 | 1 | 0 |
| FRAME 183 | scene37969 | 1 | 0 | 1 | 0 |
| FRAME 184 | scene37981 | 1 | 0 | 1 | 0 |
| FRAME 185 | scene38317 | 1 | 0 | 1 | 0 |
| FRAME 186 | scene38329 | 1 | 0 | 1 | 0 |
| FRAME 187 | scene38341 | 1 | 0 | 1 | 0 |
| FRAME 188 | scene39661 | 1 | 0 | 1 | 0 |
| FRAME 189 | scene39673 | 1 | 0 | 1 | 0 |
| FRAME 190 | scene39685 | 1 | 0 | 1 | 0 |
| FRAME 191 | scene39697 | 1 | 0 | 1 | 0 |
| FRAME 192 | scene42685 | 0 | 1 | 0 | 0 |
| FRAME 193 | scene42697 | 0 | 1 | 0 | 0 |
| FRAME 194 | scene42709 | 0 | 1 | 0 | 1 |
| FRAME 195 | scene42721 | 1 | 1 | 2 | 1 |
| FRAME 196 | scene42733 | 1 | 1 | 2 | 0 |
| FRAME 197 | scene42745 | 1 | 1 | 1 | 0 |
| FRAME 198 | scene43525 | 1 | 0 | 1 | 0 |
| FRAME 199 | scene43537 | 1 | 0 | 1 | 0 |
| FRAME 200 | scene43549 | 1 | 0 | 1 | 0 |
| FRAME 201 | scene45145 | 1 | 0 | 1 | 0 |
| FRAME 202 | scene45157 | 1 | 0 | 1 | 0 |
| FRAME 203 | scene45169 | 1 | 0 | 1 | 0 |
| FRAME 204 | scene45421 | 3 | 0 | 1 | 0 |


| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | , | I |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of Pedestrians | \# of Cyclists |
| FRAME 205 | scene45433 | 3 | 0 | 3 | 0 |
| FRAME 206 | scene45445 | 3 | 0 | 2 | 0 |
| FRAME 207 | scene45457 | 5 | 0 | 4 | 0 |
| FRAME 208 | scene45469 | 5 | 0 | 4 | 0 |
| FRAME 209 | scene46657 | 3 | 0 | 3 | 0 |
| FRAME 210 | scene46669 | 3 | 0 | 2 | 0 |
| FRAME 211 | scene46705 | 3 | 0 | 3 | 0 |
| FRAME 212 | scene46729 | 3 | 0 | 3 | 0 |
| FRAME 213 | scene46741 | 3 | 0 | 3 | 0 |
| FRAME 214 | scene47149 | 1 | 0 | 1 | 0 |
| FRAME 215 | scene47161 | 1 | 0 | 2 | 0 |
| FRAME 216 | scene47173 | 1 | 0 | 2 | 0 |
| FRAME 217 | scene47329 | 2 | 0 | 2 | 0 |
| FRAME 218 | scene47341 | 2 | 0 | 2 | 0 |
| FRAME 219 | scene49417 | 1 | 0 | 1 | 0 |
| FRAME 220 | scene49429 | 1 | 0 | 1 | 0 |
| FRAME 221 | scene49441 | 1 | 0 | 1 | 0 |
| FRAME 222 | scene51385 | 1 | 0 | 1 | 0 |
| FRAME 223 | scene51397 | 1 | 0 | 1 | 0 |
| FRAME 224 | scene51409 | 1 | 0 | 1 | 0 |
| FRAME 225 | scene51421 | 1 | 0 | 1 | 0 |
| FRAME 226 | scene55189 | 1 | 0 | 1 | 0 |
| FRAME 227 | scene55201 | 1 | 0 | 1 | 0 |
| FRAME 228 | scene55213 | 1 | 0 | 1 | 0 |
| FRAME 229 | scene55225 | 1 | 0 | 1 | 0 |
| FRAME 230 | scene55237 | 1 | 0 | 1 | 0 |
| FRAME 231 | scene56629 | 1 | 0 | 2 | 0 |
| FRAME 232 | scene56641 | 1 | 0 | 1 | 0 |
| FRAME 233 | scene56653 | 1 | 0 | 1 | 0 |
| FRAME 234 | scene57745 | 1 | 0 | 1 | 0 |
| FRAME 235 | scene57757 | 1 | 0 | 1 | 0 |
| FRAME 236 | scene57769 | 1 | 0 | 0 | 0 |
| FRAME 237 | scene58597 | 1 | 0 | 1 | 0 |
| FRAME 238 | scene58609 | 1 | 0 | 1 | 0 |


| LOCATION: SITE 5 (UNION) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ) | - |  |  |
| FOLDER NUMBER: 236 (1) |  |  |  |  |  |
| DATE AND TIME: October 27, 2017, 7:31:44 PM |  |  |  |  |  |
| WEATHER: Rain |  |  |  |  |  |
| TOTAL HOURS: 1 |  |  |  |  |  |
| TOTAL NUMBER OF FRAMES: 278 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Manual Counting |  | Algorithm Detected |  |
| FRAME NUMBER | FRAME CODE | \# of <br> Pedestrians | \# of Cyclists | \# of Pedestrians | \# of Cyclists |
| FRAME 239 | scene58621 | 1 | 0 | 1 | 0 |
| FRAME 240 | scene28993 | 1 | 0 | 1 | 0 |
| FRAME 241 | scene59005 | 1 | 0 | 1 | 0 |
| FRAME 242 | scene59017 | 1 | 0 | 1 | 0 |
| FRAME 243 | scene59041 | 1 | 0 | 2 | 0 |
| FRAME 244 | scene59053 | 1 | 0 | 1 | 0 |
| FRAME 245 | scene59065 | 1 | 0 | 1 |  |
| FRAME 246 | scene59149 | 4 | 0 | 3 | 0 |
| FRAME 247 | scene59161 | 6 | 0 | 3 | 0 |
| FRAME 248 | scene59173 | 6 | 0 | 4 | 0 |
| FRAME 249 | scene59185 | 6 | 0 | 4 | 0 |
| FRAME 250 | scene59197 | 6 | 0 | 3 | 0 |
| FRAME 251 | scene63985 | 2 | 0 | 1 | 0 |
| FRAME 252 | scene63997 | 2 | 0 | 2 | 0 |
| FRAME 253 | scene64009 | 2 | 0 | 1 | 0 |
| FRAME 254 | scene64021 | 2 | 0 | 2 | 0 |
| FRAME 255 | scene64033 | 2 | 0 | 2 | 0 |
| FRAME 256 | scene68677 | 1 | 0 | 1 | 0 |
| FRAME 257 | scene68689 | 1 | 0 | 1 | 0 |
| FRAME 258 | scene68701 | 1 | 0 | 1 | 0 |
| FRAME 259 | scene68713 | 1 | 0 | 1 | 0 |
| FRAME 260 | scene70945 | 1 | 0 | 1 | 0 |
| FRAME 261 | scene70957 | 1 | 0 | 1 | 0 |
| FRAME 262 | scene70969 | 1 | 0 | 1 | 0 |
| FRAME 263 | scene70981 | 2 | 0 | 2 | 0 |
| FRAME 264 | scene70993 | 2 | 0 | 1 | 0 |
| FRAME 265 | scene71005 | 2 | 0 | 1 | 0 |
| FRAME 266 | scene71689 | 1 | 0 | 0 | 0 |
| FRAME 267 | scene71701 | 1 | 0 | 1 | 0 |
| FRAME 268 | scene71713 | 1 | 0 | 1 | 0 |
| FRAME 269 | scene71725 | 1 | 0 | 1 | 0 |
| FRAME 270 | scene75541 | 1 | 0 | 1 | 0 |
| FRAME 271 | scene75553 | 1 | 0 Rain | 1 | 0 |
| FRAME 272 | scene75565 | 1 | 0 Rain | 1 | 0 |



This public document is published at a total cost of \$250 42 copies of this public document were published in this first printing at a cost of $\$ 250$. The total cost of all printings of this document including reprints is $\$ 250$. This document was published by Louisiana Transportation Research Center to report and publish research findings as required in R.S. 48:105. This material was duplicated in accordance with standards for printing by state agencies established pursuant to R.S. 43:31. Printing of this material was purchased in accordance with the provisions of Title 43 of the Louisiana Revised Statutes.

